MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ofmres Unicode version

Theorem ofmres 6203
Description: Equivalent expressions for a restriction of the function operation map. Unlike  o F R which is a proper class,  (  o F R  |  `  ( A  X.  B
) ) can be a set by ofmresex 6205, allowing it to be used as a function or structure argument. By ofmresval 6204, the restricted operation map values are the same as the original values, allowing theorems for  o F R to be reused. (Contributed by NM, 20-Oct-2014.)
Assertion
Ref Expression
ofmres  |-  (  o F R  |`  ( A  X.  B ) )  =  ( f  e.  A ,  g  e.  B  |->  ( f  o F R g ) )
Distinct variable groups:    f, g, A    B, f, g    R, f, g

Proof of Theorem ofmres
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 ssv 3274 . . 3  |-  A  C_  _V
2 ssv 3274 . . 3  |-  B  C_  _V
3 resmpt2 6029 . . 3  |-  ( ( A  C_  _V  /\  B  C_ 
_V )  ->  (
( f  e.  _V ,  g  e.  _V  |->  ( x  e.  ( dom  f  i^i  dom  g
)  |->  ( ( f `
 x ) R ( g `  x
) ) ) )  |`  ( A  X.  B
) )  =  ( f  e.  A , 
g  e.  B  |->  ( x  e.  ( dom  f  i^i  dom  g
)  |->  ( ( f `
 x ) R ( g `  x
) ) ) ) )
41, 2, 3mp2an 653 . 2  |-  ( ( f  e.  _V , 
g  e.  _V  |->  ( x  e.  ( dom  f  i^i  dom  g
)  |->  ( ( f `
 x ) R ( g `  x
) ) ) )  |`  ( A  X.  B
) )  =  ( f  e.  A , 
g  e.  B  |->  ( x  e.  ( dom  f  i^i  dom  g
)  |->  ( ( f `
 x ) R ( g `  x
) ) ) )
5 df-of 6165 . . 3  |-  o F R  =  ( f  e.  _V ,  g  e.  _V  |->  ( x  e.  ( dom  f  i^i  dom  g )  |->  ( ( f `  x
) R ( g `
 x ) ) ) )
65reseq1i 5033 . 2  |-  (  o F R  |`  ( A  X.  B ) )  =  ( ( f  e.  _V ,  g  e.  _V  |->  ( x  e.  ( dom  f  i^i  dom  g )  |->  ( ( f `  x
) R ( g `
 x ) ) ) )  |`  ( A  X.  B ) )
7 eqid 2358 . . 3  |-  A  =  A
8 eqid 2358 . . 3  |-  B  =  B
9 vex 2867 . . . 4  |-  f  e. 
_V
10 vex 2867 . . . 4  |-  g  e. 
_V
119dmex 5023 . . . . . 6  |-  dom  f  e.  _V
1211inex1 4236 . . . . 5  |-  ( dom  f  i^i  dom  g
)  e.  _V
1312mptex 5832 . . . 4  |-  ( x  e.  ( dom  f  i^i  dom  g )  |->  ( ( f `  x
) R ( g `
 x ) ) )  e.  _V
145ovmpt4g 6057 . . . 4  |-  ( ( f  e.  _V  /\  g  e.  _V  /\  (
x  e.  ( dom  f  i^i  dom  g
)  |->  ( ( f `
 x ) R ( g `  x
) ) )  e. 
_V )  ->  (
f  o F R g )  =  ( x  e.  ( dom  f  i^i  dom  g
)  |->  ( ( f `
 x ) R ( g `  x
) ) ) )
159, 10, 13, 14mp3an 1277 . . 3  |-  ( f  o F R g )  =  ( x  e.  ( dom  f  i^i  dom  g )  |->  ( ( f `  x
) R ( g `
 x ) ) )
167, 8, 15mpt2eq123i 5998 . 2  |-  ( f  e.  A ,  g  e.  B  |->  ( f  o F R g ) )  =  ( f  e.  A , 
g  e.  B  |->  ( x  e.  ( dom  f  i^i  dom  g
)  |->  ( ( f `
 x ) R ( g `  x
) ) ) )
174, 6, 163eqtr4i 2388 1  |-  (  o F R  |`  ( A  X.  B ) )  =  ( f  e.  A ,  g  e.  B  |->  ( f  o F R g ) )
Colors of variables: wff set class
Syntax hints:    = wceq 1642    e. wcel 1710   _Vcvv 2864    i^i cin 3227    C_ wss 3228    e. cmpt 4158    X. cxp 4769   dom cdm 4771    |` cres 4773   ` cfv 5337  (class class class)co 5945    e. cmpt2 5947    o Fcof 6163
This theorem is referenced by:  mplsubrglem  16282  psrplusgpropd  16412
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1546  ax-5 1557  ax-17 1616  ax-9 1654  ax-8 1675  ax-13 1712  ax-14 1714  ax-6 1729  ax-7 1734  ax-11 1746  ax-12 1930  ax-ext 2339  ax-rep 4212  ax-sep 4222  ax-nul 4230  ax-pr 4295  ax-un 4594
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-tru 1319  df-ex 1542  df-nf 1545  df-sb 1649  df-eu 2213  df-mo 2214  df-clab 2345  df-cleq 2351  df-clel 2354  df-nfc 2483  df-ne 2523  df-ral 2624  df-rex 2625  df-reu 2626  df-rab 2628  df-v 2866  df-sbc 3068  df-csb 3158  df-dif 3231  df-un 3233  df-in 3235  df-ss 3242  df-nul 3532  df-if 3642  df-sn 3722  df-pr 3723  df-op 3725  df-uni 3909  df-iun 3988  df-br 4105  df-opab 4159  df-mpt 4160  df-id 4391  df-xp 4777  df-rel 4778  df-cnv 4779  df-co 4780  df-dm 4781  df-rn 4782  df-res 4783  df-ima 4784  df-iota 5301  df-fun 5339  df-fn 5340  df-f 5341  df-f1 5342  df-fo 5343  df-f1o 5344  df-fv 5345  df-ov 5948  df-oprab 5949  df-mpt2 5950  df-of 6165
  Copyright terms: Public domain W3C validator