HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  normlem6 Unicode version

Theorem normlem6 21524
Description: Lemma used to derive properties of norm. Part of Theorem 3.3(ii) of [Beran] p. 97. (Contributed by NM, 2-Aug-1999.) (Revised by Mario Carneiro, 4-Jun-2014.) (New usage is discouraged.)
Hypotheses
Ref Expression
normlem1.1  |-  S  e.  CC
normlem1.2  |-  F  e. 
~H
normlem1.3  |-  G  e. 
~H
normlem2.4  |-  B  = 
-u ( ( ( * `  S )  x.  ( F  .ih  G ) )  +  ( S  x.  ( G 
.ih  F ) ) )
normlem3.5  |-  A  =  ( G  .ih  G
)
normlem3.6  |-  C  =  ( F  .ih  F
)
normlem6.7  |-  ( abs `  S )  =  1
Assertion
Ref Expression
normlem6  |-  ( abs `  B )  <_  (
2  x.  ( ( sqr `  A )  x.  ( sqr `  C
) ) )

Proof of Theorem normlem6
StepHypRef Expression
1 normlem3.5 . . . . . . . . 9  |-  A  =  ( G  .ih  G
)
2 normlem1.3 . . . . . . . . . 10  |-  G  e. 
~H
3 hiidrcl 21504 . . . . . . . . . 10  |-  ( G  e.  ~H  ->  ( G  .ih  G )  e.  RR )
42, 3ax-mp 10 . . . . . . . . 9  |-  ( G 
.ih  G )  e.  RR
51, 4eqeltri 2323 . . . . . . . 8  |-  A  e.  RR
65a1i 12 . . . . . . 7  |-  (  T. 
->  A  e.  RR )
7 normlem1.1 . . . . . . . . 9  |-  S  e.  CC
8 normlem1.2 . . . . . . . . 9  |-  F  e. 
~H
9 normlem2.4 . . . . . . . . 9  |-  B  = 
-u ( ( ( * `  S )  x.  ( F  .ih  G ) )  +  ( S  x.  ( G 
.ih  F ) ) )
107, 8, 2, 9normlem2 21520 . . . . . . . 8  |-  B  e.  RR
1110a1i 12 . . . . . . 7  |-  (  T. 
->  B  e.  RR )
12 normlem3.6 . . . . . . . . 9  |-  C  =  ( F  .ih  F
)
13 hiidrcl 21504 . . . . . . . . . 10  |-  ( F  e.  ~H  ->  ( F  .ih  F )  e.  RR )
148, 13ax-mp 10 . . . . . . . . 9  |-  ( F 
.ih  F )  e.  RR
1512, 14eqeltri 2323 . . . . . . . 8  |-  C  e.  RR
1615a1i 12 . . . . . . 7  |-  (  T. 
->  C  e.  RR )
17 oveq1 5717 . . . . . . . . . . . . 13  |-  ( x  =  if ( x  e.  RR ,  x ,  0 )  -> 
( x ^ 2 )  =  ( if ( x  e.  RR ,  x ,  0 ) ^ 2 ) )
1817oveq2d 5726 . . . . . . . . . . . 12  |-  ( x  =  if ( x  e.  RR ,  x ,  0 )  -> 
( A  x.  (
x ^ 2 ) )  =  ( A  x.  ( if ( x  e.  RR ,  x ,  0 ) ^ 2 ) ) )
19 oveq2 5718 . . . . . . . . . . . 12  |-  ( x  =  if ( x  e.  RR ,  x ,  0 )  -> 
( B  x.  x
)  =  ( B  x.  if ( x  e.  RR ,  x ,  0 ) ) )
2018, 19oveq12d 5728 . . . . . . . . . . 11  |-  ( x  =  if ( x  e.  RR ,  x ,  0 )  -> 
( ( A  x.  ( x ^ 2 ) )  +  ( B  x.  x ) )  =  ( ( A  x.  ( if ( x  e.  RR ,  x ,  0 ) ^ 2 ) )  +  ( B  x.  if ( x  e.  RR ,  x ,  0 ) ) ) )
2120oveq1d 5725 . . . . . . . . . 10  |-  ( x  =  if ( x  e.  RR ,  x ,  0 )  -> 
( ( ( A  x.  ( x ^
2 ) )  +  ( B  x.  x
) )  +  C
)  =  ( ( ( A  x.  ( if ( x  e.  RR ,  x ,  0 ) ^ 2 ) )  +  ( B  x.  if ( x  e.  RR ,  x ,  0 ) ) )  +  C
) )
2221breq2d 3932 . . . . . . . . 9  |-  ( x  =  if ( x  e.  RR ,  x ,  0 )  -> 
( 0  <_  (
( ( A  x.  ( x ^ 2 ) )  +  ( B  x.  x ) )  +  C )  <->  0  <_  ( (
( A  x.  ( if ( x  e.  RR ,  x ,  0 ) ^ 2 ) )  +  ( B  x.  if ( x  e.  RR ,  x ,  0 ) ) )  +  C
) ) )
23 0re 8718 . . . . . . . . . . 11  |-  0  e.  RR
2423elimel 3522 . . . . . . . . . 10  |-  if ( x  e.  RR ,  x ,  0 )  e.  RR
25 normlem6.7 . . . . . . . . . 10  |-  ( abs `  S )  =  1
267, 8, 2, 9, 1, 12, 24, 25normlem5 21523 . . . . . . . . 9  |-  0  <_  ( ( ( A  x.  ( if ( x  e.  RR ,  x ,  0 ) ^ 2 ) )  +  ( B  x.  if ( x  e.  RR ,  x ,  0 ) ) )  +  C
)
2722, 26dedth 3511 . . . . . . . 8  |-  ( x  e.  RR  ->  0  <_  ( ( ( A  x.  ( x ^
2 ) )  +  ( B  x.  x
) )  +  C
) )
2827adantl 454 . . . . . . 7  |-  ( (  T.  /\  x  e.  RR )  ->  0  <_  ( ( ( A  x.  ( x ^
2 ) )  +  ( B  x.  x
) )  +  C
) )
296, 11, 16, 28discr 11116 . . . . . 6  |-  (  T. 
->  ( ( B ^
2 )  -  (
4  x.  ( A  x.  C ) ) )  <_  0 )
3029trud 1320 . . . . 5  |-  ( ( B ^ 2 )  -  ( 4  x.  ( A  x.  C
) ) )  <_ 
0
3110resqcli 11067 . . . . . 6  |-  ( B ^ 2 )  e.  RR
32 4re 9699 . . . . . . 7  |-  4  e.  RR
335, 15remulcli 8731 . . . . . . 7  |-  ( A  x.  C )  e.  RR
3432, 33remulcli 8731 . . . . . 6  |-  ( 4  x.  ( A  x.  C ) )  e.  RR
3531, 34, 23lesubadd2i 9213 . . . . 5  |-  ( ( ( B ^ 2 )  -  ( 4  x.  ( A  x.  C ) ) )  <_  0  <->  ( B ^ 2 )  <_ 
( ( 4  x.  ( A  x.  C
) )  +  0 ) )
3630, 35mpbi 201 . . . 4  |-  ( B ^ 2 )  <_ 
( ( 4  x.  ( A  x.  C
) )  +  0 )
3734recni 8729 . . . . 5  |-  ( 4  x.  ( A  x.  C ) )  e.  CC
3837addid1i 8879 . . . 4  |-  ( ( 4  x.  ( A  x.  C ) )  +  0 )  =  ( 4  x.  ( A  x.  C )
)
3936, 38breqtri 3943 . . 3  |-  ( B ^ 2 )  <_ 
( 4  x.  ( A  x.  C )
)
4010sqge0i 11069 . . . 4  |-  0  <_  ( B ^ 2 )
41 4pos 9712 . . . . . 6  |-  0  <  4
4223, 32, 41ltleii 8821 . . . . 5  |-  0  <_  4
43 hiidge0 21507 . . . . . . . 8  |-  ( G  e.  ~H  ->  0  <_  ( G  .ih  G
) )
442, 43ax-mp 10 . . . . . . 7  |-  0  <_  ( G  .ih  G
)
4544, 1breqtrri 3945 . . . . . 6  |-  0  <_  A
46 hiidge0 21507 . . . . . . . 8  |-  ( F  e.  ~H  ->  0  <_  ( F  .ih  F
) )
478, 46ax-mp 10 . . . . . . 7  |-  0  <_  ( F  .ih  F
)
4847, 12breqtrri 3945 . . . . . 6  |-  0  <_  C
495, 15mulge0i 9200 . . . . . 6  |-  ( ( 0  <_  A  /\  0  <_  C )  -> 
0  <_  ( A  x.  C ) )
5045, 48, 49mp2an 656 . . . . 5  |-  0  <_  ( A  x.  C
)
5132, 33mulge0i 9200 . . . . 5  |-  ( ( 0  <_  4  /\  0  <_  ( A  x.  C ) )  -> 
0  <_  ( 4  x.  ( A  x.  C ) ) )
5242, 50, 51mp2an 656 . . . 4  |-  0  <_  ( 4  x.  ( A  x.  C )
)
5331, 34sqrlei 11749 . . . 4  |-  ( ( 0  <_  ( B ^ 2 )  /\  0  <_  ( 4  x.  ( A  x.  C
) ) )  -> 
( ( B ^
2 )  <_  (
4  x.  ( A  x.  C ) )  <-> 
( sqr `  ( B ^ 2 ) )  <_  ( sqr `  (
4  x.  ( A  x.  C ) ) ) ) )
5440, 52, 53mp2an 656 . . 3  |-  ( ( B ^ 2 )  <_  ( 4  x.  ( A  x.  C
) )  <->  ( sqr `  ( B ^ 2 ) )  <_  ( sqr `  ( 4  x.  ( A  x.  C
) ) ) )
5539, 54mpbi 201 . 2  |-  ( sqr `  ( B ^ 2 ) )  <_  ( sqr `  ( 4  x.  ( A  x.  C
) ) )
5610absrei 11742 . 2  |-  ( abs `  B )  =  ( sqr `  ( B ^ 2 ) )
5732, 33, 42, 50sqrmulii 11747 . . 3  |-  ( sqr `  ( 4  x.  ( A  x.  C )
) )  =  ( ( sqr `  4
)  x.  ( sqr `  ( A  x.  C
) ) )
58 sqr4 11635 . . . 4  |-  ( sqr `  4 )  =  2
595, 15, 45, 48sqrmulii 11747 . . . 4  |-  ( sqr `  ( A  x.  C
) )  =  ( ( sqr `  A
)  x.  ( sqr `  C ) )
6058, 59oveq12i 5722 . . 3  |-  ( ( sqr `  4 )  x.  ( sqr `  ( A  x.  C )
) )  =  ( 2  x.  ( ( sqr `  A )  x.  ( sqr `  C
) ) )
6157, 60eqtr2i 2274 . 2  |-  ( 2  x.  ( ( sqr `  A )  x.  ( sqr `  C ) ) )  =  ( sqr `  ( 4  x.  ( A  x.  C )
) )
6255, 56, 613brtr4i 3948 1  |-  ( abs `  B )  <_  (
2  x.  ( ( sqr `  A )  x.  ( sqr `  C
) ) )
Colors of variables: wff set class
Syntax hints:    <-> wb 178    T. wtru 1312    = wceq 1619    e. wcel 1621   ifcif 3470   class class class wbr 3920   ` cfv 4592  (class class class)co 5710   CCcc 8615   RRcr 8616   0cc0 8617   1c1 8618    + caddc 8620    x. cmul 8622    <_ cle 8748    - cmin 8917   -ucneg 8918   2c2 9675   4c4 9677   ^cexp 10982   *ccj 11458   sqrcsqr 11595   abscabs 11596   ~Hchil 21329    .ih csp 21332
This theorem is referenced by:  normlem7  21525
This theorem was proved from axioms:  ax-1 7  ax-2 8  ax-3 9  ax-mp 10  ax-5 1533  ax-6 1534  ax-7 1535  ax-gen 1536  ax-8 1623  ax-11 1624  ax-13 1625  ax-14 1626  ax-17 1628  ax-12o 1664  ax-10 1678  ax-9 1684  ax-4 1692  ax-16 1926  ax-ext 2234  ax-sep 4038  ax-nul 4046  ax-pow 4082  ax-pr 4108  ax-un 4403  ax-cnex 8673  ax-resscn 8674  ax-1cn 8675  ax-icn 8676  ax-addcl 8677  ax-addrcl 8678  ax-mulcl 8679  ax-mulrcl 8680  ax-mulcom 8681  ax-addass 8682  ax-mulass 8683  ax-distr 8684  ax-i2m1 8685  ax-1ne0 8686  ax-1rid 8687  ax-rnegex 8688  ax-rrecex 8689  ax-cnre 8690  ax-pre-lttri 8691  ax-pre-lttrn 8692  ax-pre-ltadd 8693  ax-pre-mulgt0 8694  ax-pre-sup 8695  ax-hfvadd 21410  ax-hv0cl 21413  ax-hfvmul 21415  ax-hvmulass 21417  ax-hvmul0 21420  ax-hfi 21488  ax-his1 21491  ax-his2 21492  ax-his3 21493  ax-his4 21494
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3or 940  df-3an 941  df-tru 1315  df-ex 1538  df-nf 1540  df-sb 1883  df-eu 2118  df-mo 2119  df-clab 2240  df-cleq 2246  df-clel 2249  df-nfc 2374  df-ne 2414  df-nel 2415  df-ral 2513  df-rex 2514  df-reu 2515  df-rab 2516  df-v 2729  df-sbc 2922  df-csb 3010  df-dif 3081  df-un 3083  df-in 3085  df-ss 3089  df-pss 3091  df-nul 3363  df-if 3471  df-pw 3532  df-sn 3550  df-pr 3551  df-tp 3552  df-op 3553  df-uni 3728  df-iun 3805  df-br 3921  df-opab 3975  df-mpt 3976  df-tr 4011  df-eprel 4198  df-id 4202  df-po 4207  df-so 4208  df-fr 4245  df-we 4247  df-ord 4288  df-on 4289  df-lim 4290  df-suc 4291  df-om 4548  df-xp 4594  df-rel 4595  df-cnv 4596  df-co 4597  df-dm 4598  df-rn 4599  df-res 4600  df-ima 4601  df-fun 4602  df-fn 4603  df-f 4604  df-f1 4605  df-fo 4606  df-f1o 4607  df-fv 4608  df-ov 5713  df-oprab 5714  df-mpt2 5715  df-2nd 5975  df-iota 6143  df-riota 6190  df-recs 6274  df-rdg 6309  df-er 6546  df-en 6750  df-dom 6751  df-sdom 6752  df-sup 7078  df-pnf 8749  df-mnf 8750  df-xr 8751  df-ltxr 8752  df-le 8753  df-sub 8919  df-neg 8920  df-div 9304  df-n 9627  df-2 9684  df-3 9685  df-4 9686  df-n0 9845  df-z 9904  df-uz 10110  df-rp 10234  df-seq 10925  df-exp 10983  df-cj 11461  df-re 11462  df-im 11463  df-sqr 11597  df-abs 11598  df-hvsub 21381
  Copyright terms: Public domain W3C validator