HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  nonbooli Unicode version

Theorem nonbooli 22078
Description: A Hilbert lattice with two or more dimensions fails the distributive law and therefore cannot be a Boolean algebra. This counterexample demonstrates a condition where 
( ( H  i^i  F )  vH  ( H  i^i  G ) )  =  0H but  ( H  i^i  ( F  vH  G ) )  =/=  0H. The antecedent specifies that the vectors  A and  B are nonzero and non-colinear. The last three hypotheses assign one-dimensional subspaces to  F,  G, and  H. (Contributed by NM, 1-Nov-2005.) (New usage is discouraged.)
Hypotheses
Ref Expression
nonbool.1  |-  A  e. 
~H
nonbool.2  |-  B  e. 
~H
nonbool.3  |-  F  =  ( span `  { A } )
nonbool.4  |-  G  =  ( span `  { B } )
nonbool.5  |-  H  =  ( span `  {
( A  +h  B
) } )
Assertion
Ref Expression
nonbooli  |-  ( -.  ( A  e.  G  \/  B  e.  F
)  ->  ( H  i^i  ( F  vH  G
) )  =/=  (
( H  i^i  F
)  vH  ( H  i^i  G ) ) )

Proof of Theorem nonbooli
StepHypRef Expression
1 nonbool.1 . . . . . . . . . . . . 13  |-  A  e. 
~H
2 nonbool.2 . . . . . . . . . . . . 13  |-  B  e. 
~H
31, 2hvaddcli 21428 . . . . . . . . . . . 12  |-  ( A  +h  B )  e. 
~H
4 spansnid 21972 . . . . . . . . . . . 12  |-  ( ( A  +h  B )  e.  ~H  ->  ( A  +h  B )  e.  ( span `  {
( A  +h  B
) } ) )
53, 4ax-mp 10 . . . . . . . . . . 11  |-  ( A  +h  B )  e.  ( span `  {
( A  +h  B
) } )
6 nonbool.5 . . . . . . . . . . 11  |-  H  =  ( span `  {
( A  +h  B
) } )
75, 6eleqtrri 2326 . . . . . . . . . 10  |-  ( A  +h  B )  e.  H
8 nonbool.3 . . . . . . . . . . . . 13  |-  F  =  ( span `  { A } )
91spansnchi 21971 . . . . . . . . . . . . . 14  |-  ( span `  { A } )  e.  CH
109chshii 21637 . . . . . . . . . . . . 13  |-  ( span `  { A } )  e.  SH
118, 10eqeltri 2323 . . . . . . . . . . . 12  |-  F  e.  SH
12 nonbool.4 . . . . . . . . . . . . 13  |-  G  =  ( span `  { B } )
132spansnchi 21971 . . . . . . . . . . . . . 14  |-  ( span `  { B } )  e.  CH
1413chshii 21637 . . . . . . . . . . . . 13  |-  ( span `  { B } )  e.  SH
1512, 14eqeltri 2323 . . . . . . . . . . . 12  |-  G  e.  SH
1611, 15shsleji 21779 . . . . . . . . . . 11  |-  ( F  +H  G )  C_  ( F  vH  G )
17 spansnid 21972 . . . . . . . . . . . . . 14  |-  ( A  e.  ~H  ->  A  e.  ( span `  { A } ) )
181, 17ax-mp 10 . . . . . . . . . . . . 13  |-  A  e.  ( span `  { A } )
1918, 8eleqtrri 2326 . . . . . . . . . . . 12  |-  A  e.  F
20 spansnid 21972 . . . . . . . . . . . . . 14  |-  ( B  e.  ~H  ->  B  e.  ( span `  { B } ) )
212, 20ax-mp 10 . . . . . . . . . . . . 13  |-  B  e.  ( span `  { B } )
2221, 12eleqtrri 2326 . . . . . . . . . . . 12  |-  B  e.  G
2311, 15shsvai 21773 . . . . . . . . . . . 12  |-  ( ( A  e.  F  /\  B  e.  G )  ->  ( A  +h  B
)  e.  ( F  +H  G ) )
2419, 22, 23mp2an 656 . . . . . . . . . . 11  |-  ( A  +h  B )  e.  ( F  +H  G
)
2516, 24sselii 3100 . . . . . . . . . 10  |-  ( A  +h  B )  e.  ( F  vH  G
)
26 elin 3266 . . . . . . . . . 10  |-  ( ( A  +h  B )  e.  ( H  i^i  ( F  vH  G ) )  <->  ( ( A  +h  B )  e.  H  /\  ( A  +h  B )  e.  ( F  vH  G
) ) )
277, 25, 26mpbir2an 891 . . . . . . . . 9  |-  ( A  +h  B )  e.  ( H  i^i  ( F  vH  G ) )
28 eleq2 2314 . . . . . . . . 9  |-  ( ( H  i^i  ( F  vH  G ) )  =  0H  ->  (
( A  +h  B
)  e.  ( H  i^i  ( F  vH  G ) )  <->  ( A  +h  B )  e.  0H ) )
2927, 28mpbii 204 . . . . . . . 8  |-  ( ( H  i^i  ( F  vH  G ) )  =  0H  ->  ( A  +h  B )  e.  0H )
30 elch0 21663 . . . . . . . 8  |-  ( ( A  +h  B )  e.  0H  <->  ( A  +h  B )  =  0h )
3129, 30sylib 190 . . . . . . 7  |-  ( ( H  i^i  ( F  vH  G ) )  =  0H  ->  ( A  +h  B )  =  0h )
32 ch0 21638 . . . . . . . 8  |-  ( (
span `  { A } )  e.  CH  ->  0h  e.  ( span `  { A } ) )
339, 32ax-mp 10 . . . . . . 7  |-  0h  e.  ( span `  { A } )
3431, 33syl6eqel 2341 . . . . . 6  |-  ( ( H  i^i  ( F  vH  G ) )  =  0H  ->  ( A  +h  B )  e.  ( span `  { A } ) )
358eleq2i 2317 . . . . . . 7  |-  ( B  e.  F  <->  B  e.  ( span `  { A } ) )
36 sumspansn 22076 . . . . . . . 8  |-  ( ( A  e.  ~H  /\  B  e.  ~H )  ->  ( ( A  +h  B )  e.  (
span `  { A } )  <->  B  e.  ( span `  { A } ) ) )
371, 2, 36mp2an 656 . . . . . . 7  |-  ( ( A  +h  B )  e.  ( span `  { A } )  <->  B  e.  ( span `  { A } ) )
3835, 37bitr4i 245 . . . . . 6  |-  ( B  e.  F  <->  ( A  +h  B )  e.  (
span `  { A } ) )
3934, 38sylibr 205 . . . . 5  |-  ( ( H  i^i  ( F  vH  G ) )  =  0H  ->  B  e.  F )
4039con3i 129 . . . 4  |-  ( -.  B  e.  F  ->  -.  ( H  i^i  ( F  vH  G ) )  =  0H )
4140adantl 454 . . 3  |-  ( ( -.  A  e.  G  /\  -.  B  e.  F
)  ->  -.  ( H  i^i  ( F  vH  G ) )  =  0H )
426, 8ineq12i 3276 . . . . . 6  |-  ( H  i^i  F )  =  ( ( span `  {
( A  +h  B
) } )  i^i  ( span `  { A } ) )
433, 1spansnm0i 22077 . . . . . . 7  |-  ( -.  ( A  +h  B
)  e.  ( span `  { A } )  ->  ( ( span `  { ( A  +h  B ) } )  i^i  ( span `  { A } ) )  =  0H )
4438, 43sylnbi 299 . . . . . 6  |-  ( -.  B  e.  F  -> 
( ( span `  {
( A  +h  B
) } )  i^i  ( span `  { A } ) )  =  0H )
4542, 44syl5eq 2297 . . . . 5  |-  ( -.  B  e.  F  -> 
( H  i^i  F
)  =  0H )
466, 12ineq12i 3276 . . . . . 6  |-  ( H  i^i  G )  =  ( ( span `  {
( A  +h  B
) } )  i^i  ( span `  { B } ) )
47 sumspansn 22076 . . . . . . . . 9  |-  ( ( B  e.  ~H  /\  A  e.  ~H )  ->  ( ( B  +h  A )  e.  (
span `  { B } )  <->  A  e.  ( span `  { B } ) ) )
482, 1, 47mp2an 656 . . . . . . . 8  |-  ( ( B  +h  A )  e.  ( span `  { B } )  <->  A  e.  ( span `  { B } ) )
491, 2hvcomi 21429 . . . . . . . . 9  |-  ( A  +h  B )  =  ( B  +h  A
)
5049eleq1i 2316 . . . . . . . 8  |-  ( ( A  +h  B )  e.  ( span `  { B } )  <->  ( B  +h  A )  e.  (
span `  { B } ) )
5112eleq2i 2317 . . . . . . . 8  |-  ( A  e.  G  <->  A  e.  ( span `  { B } ) )
5248, 50, 513bitr4ri 271 . . . . . . 7  |-  ( A  e.  G  <->  ( A  +h  B )  e.  (
span `  { B } ) )
533, 2spansnm0i 22077 . . . . . . 7  |-  ( -.  ( A  +h  B
)  e.  ( span `  { B } )  ->  ( ( span `  { ( A  +h  B ) } )  i^i  ( span `  { B } ) )  =  0H )
5452, 53sylnbi 299 . . . . . 6  |-  ( -.  A  e.  G  -> 
( ( span `  {
( A  +h  B
) } )  i^i  ( span `  { B } ) )  =  0H )
5546, 54syl5eq 2297 . . . . 5  |-  ( -.  A  e.  G  -> 
( H  i^i  G
)  =  0H )
5645, 55oveqan12rd 5730 . . . 4  |-  ( ( -.  A  e.  G  /\  -.  B  e.  F
)  ->  ( ( H  i^i  F )  vH  ( H  i^i  G ) )  =  ( 0H 
vH  0H ) )
57 h0elch 21664 . . . . 5  |-  0H  e.  CH
5857chj0i 21864 . . . 4  |-  ( 0H 
vH  0H )  =  0H
5956, 58syl6eq 2301 . . 3  |-  ( ( -.  A  e.  G  /\  -.  B  e.  F
)  ->  ( ( H  i^i  F )  vH  ( H  i^i  G ) )  =  0H )
60 eqeq2 2262 . . . . 5  |-  ( ( ( H  i^i  F
)  vH  ( H  i^i  G ) )  =  0H  ->  ( ( H  i^i  ( F  vH  G ) )  =  ( ( H  i^i  F )  vH  ( H  i^i  G ) )  <-> 
( H  i^i  ( F  vH  G ) )  =  0H ) )
6160notbid 287 . . . 4  |-  ( ( ( H  i^i  F
)  vH  ( H  i^i  G ) )  =  0H  ->  ( -.  ( H  i^i  ( F  vH  G ) )  =  ( ( H  i^i  F )  vH  ( H  i^i  G ) )  <->  -.  ( H  i^i  ( F  vH  G
) )  =  0H ) )
6261biimparc 475 . . 3  |-  ( ( -.  ( H  i^i  ( F  vH  G ) )  =  0H  /\  ( ( H  i^i  F )  vH  ( H  i^i  G ) )  =  0H )  ->  -.  ( H  i^i  ( F  vH  G ) )  =  ( ( H  i^i  F )  vH  ( H  i^i  G ) ) )
6341, 59, 62syl2anc 645 . 2  |-  ( ( -.  A  e.  G  /\  -.  B  e.  F
)  ->  -.  ( H  i^i  ( F  vH  G ) )  =  ( ( H  i^i  F )  vH  ( H  i^i  G ) ) )
64 ioran 478 . 2  |-  ( -.  ( A  e.  G  \/  B  e.  F
)  <->  ( -.  A  e.  G  /\  -.  B  e.  F ) )
65 df-ne 2414 . 2  |-  ( ( H  i^i  ( F  vH  G ) )  =/=  ( ( H  i^i  F )  vH  ( H  i^i  G ) )  <->  -.  ( H  i^i  ( F  vH  G
) )  =  ( ( H  i^i  F
)  vH  ( H  i^i  G ) ) )
6663, 64, 653imtr4i 259 1  |-  ( -.  ( A  e.  G  \/  B  e.  F
)  ->  ( H  i^i  ( F  vH  G
) )  =/=  (
( H  i^i  F
)  vH  ( H  i^i  G ) ) )
Colors of variables: wff set class
Syntax hints:   -. wn 5    -> wi 6    <-> wb 178    \/ wo 359    /\ wa 360    = wceq 1619    e. wcel 1621    =/= wne 2412    i^i cin 3077   {csn 3544   ` cfv 4592  (class class class)co 5710   ~Hchil 21329    +h cva 21330   0hc0v 21334   SHcsh 21338   CHcch 21339    +H cph 21341   spancspn 21342    vH chj 21343   0Hc0h 21345
This theorem was proved from axioms:  ax-1 7  ax-2 8  ax-3 9  ax-mp 10  ax-5 1533  ax-6 1534  ax-7 1535  ax-gen 1536  ax-8 1623  ax-11 1624  ax-13 1625  ax-14 1626  ax-17 1628  ax-12o 1664  ax-10 1678  ax-9 1684  ax-4 1692  ax-16 1926  ax-ext 2234  ax-rep 4028  ax-sep 4038  ax-nul 4046  ax-pow 4082  ax-pr 4108  ax-un 4403  ax-inf2 7226  ax-cc 7945  ax-cnex 8673  ax-resscn 8674  ax-1cn 8675  ax-icn 8676  ax-addcl 8677  ax-addrcl 8678  ax-mulcl 8679  ax-mulrcl 8680  ax-mulcom 8681  ax-addass 8682  ax-mulass 8683  ax-distr 8684  ax-i2m1 8685  ax-1ne0 8686  ax-1rid 8687  ax-rnegex 8688  ax-rrecex 8689  ax-cnre 8690  ax-pre-lttri 8691  ax-pre-lttrn 8692  ax-pre-ltadd 8693  ax-pre-mulgt0 8694  ax-pre-sup 8695  ax-addf 8696  ax-mulf 8697  ax-hilex 21409  ax-hfvadd 21410  ax-hvcom 21411  ax-hvass 21412  ax-hv0cl 21413  ax-hvaddid 21414  ax-hfvmul 21415  ax-hvmulid 21416  ax-hvmulass 21417  ax-hvdistr1 21418  ax-hvdistr2 21419  ax-hvmul0 21420  ax-hfi 21488  ax-his1 21491  ax-his2 21492  ax-his3 21493  ax-his4 21494  ax-hcompl 21611
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3or 940  df-3an 941  df-tru 1315  df-ex 1538  df-nf 1540  df-sb 1883  df-eu 2118  df-mo 2119  df-clab 2240  df-cleq 2246  df-clel 2249  df-nfc 2374  df-ne 2414  df-nel 2415  df-ral 2513  df-rex 2514  df-reu 2515  df-rab 2516  df-v 2729  df-sbc 2922  df-csb 3010  df-dif 3081  df-un 3083  df-in 3085  df-ss 3089  df-pss 3091  df-nul 3363  df-if 3471  df-pw 3532  df-sn 3550  df-pr 3551  df-tp 3552  df-op 3553  df-uni 3728  df-int 3761  df-iun 3805  df-iin 3806  df-br 3921  df-opab 3975  df-mpt 3976  df-tr 4011  df-eprel 4198  df-id 4202  df-po 4207  df-so 4208  df-fr 4245  df-se 4246  df-we 4247  df-ord 4288  df-on 4289  df-lim 4290  df-suc 4291  df-om 4548  df-xp 4594  df-rel 4595  df-cnv 4596  df-co 4597  df-dm 4598  df-rn 4599  df-res 4600  df-ima 4601  df-fun 4602  df-fn 4603  df-f 4604  df-f1 4605  df-fo 4606  df-f1o 4607  df-fv 4608  df-isom 4609  df-ov 5713  df-oprab 5714  df-mpt2 5715  df-of 5930  df-1st 5974  df-2nd 5975  df-iota 6143  df-riota 6190  df-recs 6274  df-rdg 6309  df-1o 6365  df-2o 6366  df-oadd 6369  df-omul 6370  df-er 6546  df-map 6660  df-pm 6661  df-ixp 6704  df-en 6750  df-dom 6751  df-sdom 6752  df-fin 6753  df-fi 7049  df-sup 7078  df-oi 7109  df-card 7456  df-acn 7459  df-cda 7678  df-pnf 8749  df-mnf 8750  df-xr 8751  df-ltxr 8752  df-le 8753  df-sub 8919  df-neg 8920  df-div 9304  df-n 9627  df-2 9684  df-3 9685  df-4 9686  df-5 9687  df-6 9688  df-7 9689  df-8 9690  df-9 9691  df-10 9692  df-n0 9845  df-z 9904  df-dec 10004  df-uz 10110  df-q 10196  df-rp 10234  df-xneg 10331  df-xadd 10332  df-xmul 10333  df-ioo 10538  df-ico 10540  df-icc 10541  df-fz 10661  df-fzo 10749  df-fl 10803  df-seq 10925  df-exp 10983  df-hash 11216  df-cj 11461  df-re 11462  df-im 11463  df-sqr 11597  df-abs 11598  df-clim 11839  df-rlim 11840  df-sum 12036  df-struct 13024  df-ndx 13025  df-slot 13026  df-base 13027  df-sets 13028  df-ress 13029  df-plusg 13095  df-mulr 13096  df-starv 13097  df-sca 13098  df-vsca 13099  df-tset 13101  df-ple 13102  df-ds 13104  df-hom 13106  df-cco 13107  df-rest 13201  df-topn 13202  df-topgen 13218  df-pt 13219  df-prds 13222  df-xrs 13277  df-0g 13278  df-gsum 13279  df-qtop 13284  df-imas 13285  df-xps 13287  df-mre 13361  df-mrc 13362  df-acs 13363  df-mnd 14202  df-submnd 14251  df-mulg 14327  df-cntz 14628  df-cmn 14926  df-xmet 16205  df-met 16206  df-bl 16207  df-mopn 16208  df-cnfld 16210  df-top 16468  df-bases 16470  df-topon 16471  df-topsp 16472  df-cld 16588  df-ntr 16589  df-cls 16590  df-nei 16667  df-cn 16789  df-cnp 16790  df-lm 16791  df-haus 16875  df-tx 17089  df-hmeo 17278  df-fbas 17352  df-fg 17353  df-fil 17373  df-fm 17465  df-flim 17466  df-flf 17467  df-xms 17717  df-ms 17718  df-tms 17719  df-cfil 18513  df-cau 18514  df-cmet 18515  df-grpo 20688  df-gid 20689  df-ginv 20690  df-gdiv 20691  df-ablo 20779  df-subgo 20799  df-vc 20932  df-nv 20978  df-va 20981  df-ba 20982  df-sm 20983  df-0v 20984  df-vs 20985  df-nmcv 20986  df-ims 20987  df-dip 21104  df-ssp 21128  df-ph 21221  df-cbn 21272  df-hnorm 21378  df-hba 21379  df-hvsub 21381  df-hlim 21382  df-hcau 21383  df-sh 21616  df-ch 21631  df-oc 21661  df-ch0 21662  df-shs 21717  df-span 21718  df-chj 21719
  Copyright terms: Public domain W3C validator