MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nnaword Unicode version

Theorem nnaword 6511
Description: Weak ordering property of addition. (Contributed by NM, 17-Sep-1995.) (Revised by Mario Carneiro, 15-Nov-2014.)
Assertion
Ref Expression
nnaword  |-  ( ( A  e.  om  /\  B  e.  om  /\  C  e.  om )  ->  ( A  C_  B  <->  ( C  +o  A )  C_  ( C  +o  B ) ) )

Proof of Theorem nnaword
StepHypRef Expression
1 nnaord 6503 . . . 4  |-  ( ( B  e.  om  /\  A  e.  om  /\  C  e.  om )  ->  ( B  e.  A  <->  ( C  +o  B )  e.  ( C  +o  A ) ) )
213com12 1160 . . 3  |-  ( ( A  e.  om  /\  B  e.  om  /\  C  e.  om )  ->  ( B  e.  A  <->  ( C  +o  B )  e.  ( C  +o  A ) ) )
32notbid 287 . 2  |-  ( ( A  e.  om  /\  B  e.  om  /\  C  e.  om )  ->  ( -.  B  e.  A  <->  -.  ( C  +o  B
)  e.  ( C  +o  A ) ) )
4 nnord 4555 . . . 4  |-  ( A  e.  om  ->  Ord  A )
5 nnord 4555 . . . 4  |-  ( B  e.  om  ->  Ord  B )
6 ordtri1 4318 . . . 4  |-  ( ( Ord  A  /\  Ord  B )  ->  ( A  C_  B  <->  -.  B  e.  A ) )
74, 5, 6syl2an 465 . . 3  |-  ( ( A  e.  om  /\  B  e.  om )  ->  ( A  C_  B  <->  -.  B  e.  A ) )
873adant3 980 . 2  |-  ( ( A  e.  om  /\  B  e.  om  /\  C  e.  om )  ->  ( A  C_  B  <->  -.  B  e.  A ) )
9 nnacl 6495 . . . . 5  |-  ( ( C  e.  om  /\  A  e.  om )  ->  ( C  +o  A
)  e.  om )
109ancoms 441 . . . 4  |-  ( ( A  e.  om  /\  C  e.  om )  ->  ( C  +o  A
)  e.  om )
11103adant2 979 . . 3  |-  ( ( A  e.  om  /\  B  e.  om  /\  C  e.  om )  ->  ( C  +o  A )  e. 
om )
12 nnacl 6495 . . . . 5  |-  ( ( C  e.  om  /\  B  e.  om )  ->  ( C  +o  B
)  e.  om )
1312ancoms 441 . . . 4  |-  ( ( B  e.  om  /\  C  e.  om )  ->  ( C  +o  B
)  e.  om )
14133adant1 978 . . 3  |-  ( ( A  e.  om  /\  B  e.  om  /\  C  e.  om )  ->  ( C  +o  B )  e. 
om )
15 nnord 4555 . . . 4  |-  ( ( C  +o  A )  e.  om  ->  Ord  ( C  +o  A
) )
16 nnord 4555 . . . 4  |-  ( ( C  +o  B )  e.  om  ->  Ord  ( C  +o  B
) )
17 ordtri1 4318 . . . 4  |-  ( ( Ord  ( C  +o  A )  /\  Ord  ( C  +o  B
) )  ->  (
( C  +o  A
)  C_  ( C  +o  B )  <->  -.  ( C  +o  B )  e.  ( C  +o  A
) ) )
1815, 16, 17syl2an 465 . . 3  |-  ( ( ( C  +o  A
)  e.  om  /\  ( C  +o  B
)  e.  om )  ->  ( ( C  +o  A )  C_  ( C  +o  B )  <->  -.  ( C  +o  B )  e.  ( C  +o  A
) ) )
1911, 14, 18syl2anc 645 . 2  |-  ( ( A  e.  om  /\  B  e.  om  /\  C  e.  om )  ->  (
( C  +o  A
)  C_  ( C  +o  B )  <->  -.  ( C  +o  B )  e.  ( C  +o  A
) ) )
203, 8, 193bitr4d 278 1  |-  ( ( A  e.  om  /\  B  e.  om  /\  C  e.  om )  ->  ( A  C_  B  <->  ( C  +o  A )  C_  ( C  +o  B ) ) )
Colors of variables: wff set class
Syntax hints:   -. wn 5    -> wi 6    <-> wb 178    /\ w3a 939    e. wcel 1621    C_ wss 3078   Ord word 4284   omcom 4547  (class class class)co 5710    +o coa 6362
This theorem is referenced by:  nnacan  6512  nnaword1  6513
This theorem was proved from axioms:  ax-1 7  ax-2 8  ax-3 9  ax-mp 10  ax-5 1533  ax-6 1534  ax-7 1535  ax-gen 1536  ax-8 1623  ax-11 1624  ax-13 1625  ax-14 1626  ax-17 1628  ax-12o 1664  ax-10 1678  ax-9 1684  ax-4 1692  ax-16 1926  ax-ext 2234  ax-sep 4038  ax-nul 4046  ax-pr 4108  ax-un 4403
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3or 940  df-3an 941  df-tru 1315  df-ex 1538  df-nf 1540  df-sb 1883  df-eu 2118  df-mo 2119  df-clab 2240  df-cleq 2246  df-clel 2249  df-nfc 2374  df-ne 2414  df-ral 2513  df-rex 2514  df-reu 2515  df-rab 2516  df-v 2729  df-sbc 2922  df-csb 3010  df-dif 3081  df-un 3083  df-in 3085  df-ss 3089  df-pss 3091  df-nul 3363  df-if 3471  df-pw 3532  df-sn 3550  df-pr 3551  df-tp 3552  df-op 3553  df-uni 3728  df-iun 3805  df-br 3921  df-opab 3975  df-mpt 3976  df-tr 4011  df-eprel 4198  df-id 4202  df-po 4207  df-so 4208  df-fr 4245  df-we 4247  df-ord 4288  df-on 4289  df-lim 4290  df-suc 4291  df-om 4548  df-xp 4594  df-rel 4595  df-cnv 4596  df-co 4597  df-dm 4598  df-rn 4599  df-res 4600  df-ima 4601  df-fun 4602  df-fn 4603  df-f 4604  df-f1 4605  df-fo 4606  df-f1o 4607  df-fv 4608  df-ov 5713  df-oprab 5714  df-mpt2 5715  df-recs 6274  df-rdg 6309  df-oadd 6369
  Copyright terms: Public domain W3C validator