HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  nmcoplbi Unicode version

Theorem nmcoplbi 22438
Description: A lower bound for the norm of a continuous linear operator. Theorem 3.5(ii) of [Beran] p. 99. (Contributed by NM, 7-Feb-2006.) (Revised by Mario Carneiro, 17-Nov-2013.) (New usage is discouraged.)
Hypotheses
Ref Expression
nmcopex.1  |-  T  e. 
LinOp
nmcopex.2  |-  T  e. 
ConOp
Assertion
Ref Expression
nmcoplbi  |-  ( A  e.  ~H  ->  ( normh `  ( T `  A ) )  <_ 
( ( normop `  T
)  x.  ( normh `  A ) ) )

Proof of Theorem nmcoplbi
StepHypRef Expression
1 0le0 9707 . . . . 5  |-  0  <_  0
21a1i 12 . . . 4  |-  ( A  =  0h  ->  0  <_  0 )
3 fveq2 5377 . . . . . . 7  |-  ( A  =  0h  ->  ( T `  A )  =  ( T `  0h ) )
4 nmcopex.1 . . . . . . . 8  |-  T  e. 
LinOp
54lnop0i 22380 . . . . . . 7  |-  ( T `
 0h )  =  0h
63, 5syl6eq 2301 . . . . . 6  |-  ( A  =  0h  ->  ( T `  A )  =  0h )
76fveq2d 5381 . . . . 5  |-  ( A  =  0h  ->  ( normh `  ( T `  A ) )  =  ( normh `  0h )
)
8 norm0 21537 . . . . 5  |-  ( normh `  0h )  =  0
97, 8syl6eq 2301 . . . 4  |-  ( A  =  0h  ->  ( normh `  ( T `  A ) )  =  0 )
10 fveq2 5377 . . . . . . 7  |-  ( A  =  0h  ->  ( normh `  A )  =  ( normh `  0h )
)
1110, 8syl6eq 2301 . . . . . 6  |-  ( A  =  0h  ->  ( normh `  A )  =  0 )
1211oveq2d 5726 . . . . 5  |-  ( A  =  0h  ->  (
( normop `  T )  x.  ( normh `  A )
)  =  ( (
normop `  T )  x.  0 ) )
13 nmcopex.2 . . . . . . . 8  |-  T  e. 
ConOp
144, 13nmcopexi 22437 . . . . . . 7  |-  ( normop `  T )  e.  RR
1514recni 8729 . . . . . 6  |-  ( normop `  T )  e.  CC
1615mul01i 8882 . . . . 5  |-  ( (
normop `  T )  x.  0 )  =  0
1712, 16syl6eq 2301 . . . 4  |-  ( A  =  0h  ->  (
( normop `  T )  x.  ( normh `  A )
)  =  0 )
182, 9, 173brtr4d 3950 . . 3  |-  ( A  =  0h  ->  ( normh `  ( T `  A ) )  <_ 
( ( normop `  T
)  x.  ( normh `  A ) ) )
1918adantl 454 . 2  |-  ( ( A  e.  ~H  /\  A  =  0h )  ->  ( normh `  ( T `  A ) )  <_ 
( ( normop `  T
)  x.  ( normh `  A ) ) )
20 normcl 21534 . . . . . . . . 9  |-  ( A  e.  ~H  ->  ( normh `  A )  e.  RR )
2120adantr 453 . . . . . . . 8  |-  ( ( A  e.  ~H  /\  A  =/=  0h )  -> 
( normh `  A )  e.  RR )
22 normne0 21539 . . . . . . . . 9  |-  ( A  e.  ~H  ->  (
( normh `  A )  =/=  0  <->  A  =/=  0h )
)
2322biimpar 473 . . . . . . . 8  |-  ( ( A  e.  ~H  /\  A  =/=  0h )  -> 
( normh `  A )  =/=  0 )
2421, 23rereccld 9467 . . . . . . 7  |-  ( ( A  e.  ~H  /\  A  =/=  0h )  -> 
( 1  /  ( normh `  A ) )  e.  RR )
25 normgt0 21536 . . . . . . . . . 10  |-  ( A  e.  ~H  ->  ( A  =/=  0h  <->  0  <  (
normh `  A ) ) )
2625biimpa 472 . . . . . . . . 9  |-  ( ( A  e.  ~H  /\  A  =/=  0h )  -> 
0  <  ( normh `  A ) )
2721, 26recgt0d 9571 . . . . . . . 8  |-  ( ( A  e.  ~H  /\  A  =/=  0h )  -> 
0  <  ( 1  /  ( normh `  A
) ) )
28 0re 8718 . . . . . . . . 9  |-  0  e.  RR
29 ltle 8790 . . . . . . . . 9  |-  ( ( 0  e.  RR  /\  ( 1  /  ( normh `  A ) )  e.  RR )  -> 
( 0  <  (
1  /  ( normh `  A ) )  -> 
0  <_  ( 1  /  ( normh `  A
) ) ) )
3028, 29mpan 654 . . . . . . . 8  |-  ( ( 1  /  ( normh `  A ) )  e.  RR  ->  ( 0  <  ( 1  / 
( normh `  A )
)  ->  0  <_  ( 1  /  ( normh `  A ) ) ) )
3124, 27, 30sylc 58 . . . . . . 7  |-  ( ( A  e.  ~H  /\  A  =/=  0h )  -> 
0  <_  ( 1  /  ( normh `  A
) ) )
3224, 31absidd 11782 . . . . . 6  |-  ( ( A  e.  ~H  /\  A  =/=  0h )  -> 
( abs `  (
1  /  ( normh `  A ) ) )  =  ( 1  / 
( normh `  A )
) )
3332oveq1d 5725 . . . . 5  |-  ( ( A  e.  ~H  /\  A  =/=  0h )  -> 
( ( abs `  (
1  /  ( normh `  A ) ) )  x.  ( normh `  ( T `  A )
) )  =  ( ( 1  /  ( normh `  A ) )  x.  ( normh `  ( T `  A )
) ) )
3424recnd 8741 . . . . . . . 8  |-  ( ( A  e.  ~H  /\  A  =/=  0h )  -> 
( 1  /  ( normh `  A ) )  e.  CC )
35 simpl 445 . . . . . . . 8  |-  ( ( A  e.  ~H  /\  A  =/=  0h )  ->  A  e.  ~H )
364lnopmuli 22382 . . . . . . . 8  |-  ( ( ( 1  /  ( normh `  A ) )  e.  CC  /\  A  e.  ~H )  ->  ( T `  ( (
1  /  ( normh `  A ) )  .h  A ) )  =  ( ( 1  / 
( normh `  A )
)  .h  ( T `
 A ) ) )
3734, 35, 36syl2anc 645 . . . . . . 7  |-  ( ( A  e.  ~H  /\  A  =/=  0h )  -> 
( T `  (
( 1  /  ( normh `  A ) )  .h  A ) )  =  ( ( 1  /  ( normh `  A
) )  .h  ( T `  A )
) )
3837fveq2d 5381 . . . . . 6  |-  ( ( A  e.  ~H  /\  A  =/=  0h )  -> 
( normh `  ( T `  ( ( 1  / 
( normh `  A )
)  .h  A ) ) )  =  (
normh `  ( ( 1  /  ( normh `  A
) )  .h  ( T `  A )
) ) )
394lnopfi 22379 . . . . . . . . 9  |-  T : ~H
--> ~H
4039ffvelrni 5516 . . . . . . . 8  |-  ( A  e.  ~H  ->  ( T `  A )  e.  ~H )
4140adantr 453 . . . . . . 7  |-  ( ( A  e.  ~H  /\  A  =/=  0h )  -> 
( T `  A
)  e.  ~H )
42 norm-iii 21549 . . . . . . 7  |-  ( ( ( 1  /  ( normh `  A ) )  e.  CC  /\  ( T `  A )  e.  ~H )  ->  ( normh `  ( ( 1  /  ( normh `  A
) )  .h  ( T `  A )
) )  =  ( ( abs `  (
1  /  ( normh `  A ) ) )  x.  ( normh `  ( T `  A )
) ) )
4334, 41, 42syl2anc 645 . . . . . 6  |-  ( ( A  e.  ~H  /\  A  =/=  0h )  -> 
( normh `  ( (
1  /  ( normh `  A ) )  .h  ( T `  A
) ) )  =  ( ( abs `  (
1  /  ( normh `  A ) ) )  x.  ( normh `  ( T `  A )
) ) )
4438, 43eqtrd 2285 . . . . 5  |-  ( ( A  e.  ~H  /\  A  =/=  0h )  -> 
( normh `  ( T `  ( ( 1  / 
( normh `  A )
)  .h  A ) ) )  =  ( ( abs `  (
1  /  ( normh `  A ) ) )  x.  ( normh `  ( T `  A )
) ) )
45 normcl 21534 . . . . . . . . 9  |-  ( ( T `  A )  e.  ~H  ->  ( normh `  ( T `  A ) )  e.  RR )
4640, 45syl 17 . . . . . . . 8  |-  ( A  e.  ~H  ->  ( normh `  ( T `  A ) )  e.  RR )
4746adantr 453 . . . . . . 7  |-  ( ( A  e.  ~H  /\  A  =/=  0h )  -> 
( normh `  ( T `  A ) )  e.  RR )
4847recnd 8741 . . . . . 6  |-  ( ( A  e.  ~H  /\  A  =/=  0h )  -> 
( normh `  ( T `  A ) )  e.  CC )
4921recnd 8741 . . . . . 6  |-  ( ( A  e.  ~H  /\  A  =/=  0h )  -> 
( normh `  A )  e.  CC )
5048, 49, 23divrec2d 9420 . . . . 5  |-  ( ( A  e.  ~H  /\  A  =/=  0h )  -> 
( ( normh `  ( T `  A )
)  /  ( normh `  A ) )  =  ( ( 1  / 
( normh `  A )
)  x.  ( normh `  ( T `  A
) ) ) )
5133, 44, 503eqtr4rd 2296 . . . 4  |-  ( ( A  e.  ~H  /\  A  =/=  0h )  -> 
( ( normh `  ( T `  A )
)  /  ( normh `  A ) )  =  ( normh `  ( T `  ( ( 1  / 
( normh `  A )
)  .h  A ) ) ) )
52 hvmulcl 21423 . . . . . 6  |-  ( ( ( 1  /  ( normh `  A ) )  e.  CC  /\  A  e.  ~H )  ->  (
( 1  /  ( normh `  A ) )  .h  A )  e. 
~H )
5334, 35, 52syl2anc 645 . . . . 5  |-  ( ( A  e.  ~H  /\  A  =/=  0h )  -> 
( ( 1  / 
( normh `  A )
)  .h  A )  e.  ~H )
54 normcl 21534 . . . . . . 7  |-  ( ( ( 1  /  ( normh `  A ) )  .h  A )  e. 
~H  ->  ( normh `  (
( 1  /  ( normh `  A ) )  .h  A ) )  e.  RR )
5553, 54syl 17 . . . . . 6  |-  ( ( A  e.  ~H  /\  A  =/=  0h )  -> 
( normh `  ( (
1  /  ( normh `  A ) )  .h  A ) )  e.  RR )
56 norm1 21658 . . . . . 6  |-  ( ( A  e.  ~H  /\  A  =/=  0h )  -> 
( normh `  ( (
1  /  ( normh `  A ) )  .h  A ) )  =  1 )
57 eqle 8803 . . . . . 6  |-  ( ( ( normh `  ( (
1  /  ( normh `  A ) )  .h  A ) )  e.  RR  /\  ( normh `  ( ( 1  / 
( normh `  A )
)  .h  A ) )  =  1 )  ->  ( normh `  (
( 1  /  ( normh `  A ) )  .h  A ) )  <_  1 )
5855, 56, 57syl2anc 645 . . . . 5  |-  ( ( A  e.  ~H  /\  A  =/=  0h )  -> 
( normh `  ( (
1  /  ( normh `  A ) )  .h  A ) )  <_ 
1 )
59 nmoplb 22317 . . . . . 6  |-  ( ( T : ~H --> ~H  /\  ( ( 1  / 
( normh `  A )
)  .h  A )  e.  ~H  /\  ( normh `  ( ( 1  /  ( normh `  A
) )  .h  A
) )  <_  1
)  ->  ( normh `  ( T `  (
( 1  /  ( normh `  A ) )  .h  A ) ) )  <_  ( normop `  T
) )
6039, 59mp3an1 1269 . . . . 5  |-  ( ( ( ( 1  / 
( normh `  A )
)  .h  A )  e.  ~H  /\  ( normh `  ( ( 1  /  ( normh `  A
) )  .h  A
) )  <_  1
)  ->  ( normh `  ( T `  (
( 1  /  ( normh `  A ) )  .h  A ) ) )  <_  ( normop `  T
) )
6153, 58, 60syl2anc 645 . . . 4  |-  ( ( A  e.  ~H  /\  A  =/=  0h )  -> 
( normh `  ( T `  ( ( 1  / 
( normh `  A )
)  .h  A ) ) )  <_  ( normop `  T ) )
6251, 61eqbrtrd 3940 . . 3  |-  ( ( A  e.  ~H  /\  A  =/=  0h )  -> 
( ( normh `  ( T `  A )
)  /  ( normh `  A ) )  <_ 
( normop `  T )
)
6314a1i 12 . . . 4  |-  ( ( A  e.  ~H  /\  A  =/=  0h )  -> 
( normop `  T )  e.  RR )
64 ledivmul2 9513 . . . 4  |-  ( ( ( normh `  ( T `  A ) )  e.  RR  /\  ( normop `  T )  e.  RR  /\  ( ( normh `  A
)  e.  RR  /\  0  <  ( normh `  A
) ) )  -> 
( ( ( normh `  ( T `  A
) )  /  ( normh `  A ) )  <_  ( normop `  T
)  <->  ( normh `  ( T `  A )
)  <_  ( ( normop `  T )  x.  ( normh `  A ) ) ) )
6547, 63, 21, 26, 64syl112anc 1191 . . 3  |-  ( ( A  e.  ~H  /\  A  =/=  0h )  -> 
( ( ( normh `  ( T `  A
) )  /  ( normh `  A ) )  <_  ( normop `  T
)  <->  ( normh `  ( T `  A )
)  <_  ( ( normop `  T )  x.  ( normh `  A ) ) ) )
6662, 65mpbid 203 . 2  |-  ( ( A  e.  ~H  /\  A  =/=  0h )  -> 
( normh `  ( T `  A ) )  <_ 
( ( normop `  T
)  x.  ( normh `  A ) ) )
6719, 66pm2.61dane 2490 1  |-  ( A  e.  ~H  ->  ( normh `  ( T `  A ) )  <_ 
( ( normop `  T
)  x.  ( normh `  A ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 6    <-> wb 178    /\ wa 360    = wceq 1619    e. wcel 1621    =/= wne 2412   class class class wbr 3920   -->wf 4588   ` cfv 4592  (class class class)co 5710   CCcc 8615   RRcr 8616   0cc0 8617   1c1 8618    x. cmul 8622    < clt 8747    <_ cle 8748    / cdiv 9303   abscabs 11596   ~Hchil 21329    .h csm 21331   normhcno 21333   0hc0v 21334   normopcnop 21355   ConOpccop 21356   LinOpclo 21357
This theorem is referenced by:  nmcoplb  22440  cnlnadjlem2  22478  cnlnadjlem7  22483
This theorem was proved from axioms:  ax-1 7  ax-2 8  ax-3 9  ax-mp 10  ax-5 1533  ax-6 1534  ax-7 1535  ax-gen 1536  ax-8 1623  ax-11 1624  ax-13 1625  ax-14 1626  ax-17 1628  ax-12o 1664  ax-10 1678  ax-9 1684  ax-4 1692  ax-16 1926  ax-ext 2234  ax-rep 4028  ax-sep 4038  ax-nul 4046  ax-pow 4082  ax-pr 4108  ax-un 4403  ax-cnex 8673  ax-resscn 8674  ax-1cn 8675  ax-icn 8676  ax-addcl 8677  ax-addrcl 8678  ax-mulcl 8679  ax-mulrcl 8680  ax-mulcom 8681  ax-addass 8682  ax-mulass 8683  ax-distr 8684  ax-i2m1 8685  ax-1ne0 8686  ax-1rid 8687  ax-rnegex 8688  ax-rrecex 8689  ax-cnre 8690  ax-pre-lttri 8691  ax-pre-lttrn 8692  ax-pre-ltadd 8693  ax-pre-mulgt0 8694  ax-pre-sup 8695  ax-hilex 21409  ax-hfvadd 21410  ax-hvcom 21411  ax-hvass 21412  ax-hv0cl 21413  ax-hvaddid 21414  ax-hfvmul 21415  ax-hvmulid 21416  ax-hvmulass 21417  ax-hvdistr1 21418  ax-hvdistr2 21419  ax-hvmul0 21420  ax-hfi 21488  ax-his1 21491  ax-his2 21492  ax-his3 21493  ax-his4 21494
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3or 940  df-3an 941  df-tru 1315  df-ex 1538  df-nf 1540  df-sb 1883  df-eu 2118  df-mo 2119  df-clab 2240  df-cleq 2246  df-clel 2249  df-nfc 2374  df-ne 2414  df-nel 2415  df-ral 2513  df-rex 2514  df-reu 2515  df-rab 2516  df-v 2729  df-sbc 2922  df-csb 3010  df-dif 3081  df-un 3083  df-in 3085  df-ss 3089  df-pss 3091  df-nul 3363  df-if 3471  df-pw 3532  df-sn 3550  df-pr 3551  df-tp 3552  df-op 3553  df-uni 3728  df-iun 3805  df-br 3921  df-opab 3975  df-mpt 3976  df-tr 4011  df-eprel 4198  df-id 4202  df-po 4207  df-so 4208  df-fr 4245  df-we 4247  df-ord 4288  df-on 4289  df-lim 4290  df-suc 4291  df-om 4548  df-xp 4594  df-rel 4595  df-cnv 4596  df-co 4597  df-dm 4598  df-rn 4599  df-res 4600  df-ima 4601  df-fun 4602  df-fn 4603  df-f 4604  df-f1 4605  df-fo 4606  df-f1o 4607  df-fv 4608  df-ov 5713  df-oprab 5714  df-mpt2 5715  df-1st 5974  df-2nd 5975  df-iota 6143  df-riota 6190  df-recs 6274  df-rdg 6309  df-er 6546  df-map 6660  df-en 6750  df-dom 6751  df-sdom 6752  df-sup 7078  df-pnf 8749  df-mnf 8750  df-xr 8751  df-ltxr 8752  df-le 8753  df-sub 8919  df-neg 8920  df-div 9304  df-n 9627  df-2 9684  df-3 9685  df-4 9686  df-n0 9845  df-z 9904  df-uz 10110  df-rp 10234  df-seq 10925  df-exp 10983  df-cj 11461  df-re 11462  df-im 11463  df-sqr 11597  df-abs 11598  df-grpo 20688  df-gid 20689  df-ablo 20779  df-vc 20932  df-nv 20978  df-va 20981  df-ba 20982  df-sm 20983  df-0v 20984  df-nmcv 20986  df-hnorm 21378  df-hba 21379  df-hvsub 21381  df-nmop 22249  df-cnop 22250  df-lnop 22251
  Copyright terms: Public domain W3C validator