HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  nmcexi Unicode version

Theorem nmcexi 22436
Description: Lemma for nmcopexi 22437 and nmcfnexi 22461. The norm of a continuous linear Hilbert space operator or functional exists. Theorem 3.5(i) of [Beran] p. 99. (Contributed by Mario Carneiro, 17-Nov-2013.) (Proof shortened by Mario Carneiro, 23-Dec-2013.) (New usage is discouraged.)
Hypotheses
Ref Expression
nmcex.1  |-  E. y  e.  RR+  A. z  e. 
~H  ( ( normh `  z )  <  y  ->  ( N `  ( T `  z )
)  <  1 )
nmcex.2  |-  ( S `
 T )  =  sup ( { m  |  E. x  e.  ~H  ( ( normh `  x
)  <_  1  /\  m  =  ( N `  ( T `  x
) ) ) } ,  RR* ,  <  )
nmcex.3  |-  ( x  e.  ~H  ->  ( N `  ( T `  x ) )  e.  RR )
nmcex.4  |-  ( N `
 ( T `  0h ) )  =  0
nmcex.5  |-  ( ( ( y  /  2
)  e.  RR+  /\  x  e.  ~H )  ->  (
( y  /  2
)  x.  ( N `
 ( T `  x ) ) )  =  ( N `  ( T `  ( ( y  /  2 )  .h  x ) ) ) )
Assertion
Ref Expression
nmcexi  |-  ( S `
 T )  e.  RR
Distinct variable groups:    x, m, y, z, N    T, m, x, y, z
Allowed substitution hints:    S( x, y, z, m)

Proof of Theorem nmcexi
StepHypRef Expression
1 nmcex.2 . . 3  |-  ( S `
 T )  =  sup ( { m  |  E. x  e.  ~H  ( ( normh `  x
)  <_  1  /\  m  =  ( N `  ( T `  x
) ) ) } ,  RR* ,  <  )
2 nmcex.3 . . . . . . . . 9  |-  ( x  e.  ~H  ->  ( N `  ( T `  x ) )  e.  RR )
3 eleq1 2313 . . . . . . . . 9  |-  ( m  =  ( N `  ( T `  x ) )  ->  ( m  e.  RR  <->  ( N `  ( T `  x ) )  e.  RR ) )
42, 3syl5ibrcom 215 . . . . . . . 8  |-  ( x  e.  ~H  ->  (
m  =  ( N `
 ( T `  x ) )  ->  m  e.  RR )
)
54imp 420 . . . . . . 7  |-  ( ( x  e.  ~H  /\  m  =  ( N `  ( T `  x
) ) )  ->  m  e.  RR )
65adantrl 699 . . . . . 6  |-  ( ( x  e.  ~H  /\  ( ( normh `  x
)  <_  1  /\  m  =  ( N `  ( T `  x
) ) ) )  ->  m  e.  RR )
76rexlimiva 2624 . . . . 5  |-  ( E. x  e.  ~H  (
( normh `  x )  <_  1  /\  m  =  ( N `  ( T `  x )
) )  ->  m  e.  RR )
87abssi 3169 . . . 4  |-  { m  |  E. x  e.  ~H  ( ( normh `  x
)  <_  1  /\  m  =  ( N `  ( T `  x
) ) ) } 
C_  RR
9 ax-hv0cl 21413 . . . . . . 7  |-  0h  e.  ~H
10 norm0 21537 . . . . . . . . 9  |-  ( normh `  0h )  =  0
11 0le1 9177 . . . . . . . . 9  |-  0  <_  1
1210, 11eqbrtri 3939 . . . . . . . 8  |-  ( normh `  0h )  <_  1
13 nmcex.4 . . . . . . . . 9  |-  ( N `
 ( T `  0h ) )  =  0
1413eqcomi 2257 . . . . . . . 8  |-  0  =  ( N `  ( T `  0h )
)
1512, 14pm3.2i 443 . . . . . . 7  |-  ( (
normh `  0h )  <_ 
1  /\  0  =  ( N `  ( T `
 0h ) ) )
16 fveq2 5377 . . . . . . . . . 10  |-  ( x  =  0h  ->  ( normh `  x )  =  ( normh `  0h )
)
1716breq1d 3930 . . . . . . . . 9  |-  ( x  =  0h  ->  (
( normh `  x )  <_  1  <->  ( normh `  0h )  <_  1 ) )
18 fveq2 5377 . . . . . . . . . . 11  |-  ( x  =  0h  ->  ( T `  x )  =  ( T `  0h ) )
1918fveq2d 5381 . . . . . . . . . 10  |-  ( x  =  0h  ->  ( N `  ( T `  x ) )  =  ( N `  ( T `  0h )
) )
2019eqeq2d 2264 . . . . . . . . 9  |-  ( x  =  0h  ->  (
0  =  ( N `
 ( T `  x ) )  <->  0  =  ( N `  ( T `
 0h ) ) ) )
2117, 20anbi12d 694 . . . . . . . 8  |-  ( x  =  0h  ->  (
( ( normh `  x
)  <_  1  /\  0  =  ( N `  ( T `  x
) ) )  <->  ( ( normh `  0h )  <_ 
1  /\  0  =  ( N `  ( T `
 0h ) ) ) ) )
2221rcla4ev 2821 . . . . . . 7  |-  ( ( 0h  e.  ~H  /\  ( ( normh `  0h )  <_  1  /\  0  =  ( N `  ( T `  0h )
) ) )  ->  E. x  e.  ~H  ( ( normh `  x
)  <_  1  /\  0  =  ( N `  ( T `  x
) ) ) )
239, 15, 22mp2an 656 . . . . . 6  |-  E. x  e.  ~H  ( ( normh `  x )  <_  1  /\  0  =  ( N `  ( T `  x ) ) )
24 c0ex 8712 . . . . . . 7  |-  0  e.  _V
25 eqeq1 2259 . . . . . . . . 9  |-  ( m  =  0  ->  (
m  =  ( N `
 ( T `  x ) )  <->  0  =  ( N `  ( T `
 x ) ) ) )
2625anbi2d 687 . . . . . . . 8  |-  ( m  =  0  ->  (
( ( normh `  x
)  <_  1  /\  m  =  ( N `  ( T `  x
) ) )  <->  ( ( normh `  x )  <_ 
1  /\  0  =  ( N `  ( T `
 x ) ) ) ) )
2726rexbidv 2528 . . . . . . 7  |-  ( m  =  0  ->  ( E. x  e.  ~H  ( ( normh `  x
)  <_  1  /\  m  =  ( N `  ( T `  x
) ) )  <->  E. x  e.  ~H  ( ( normh `  x )  <_  1  /\  0  =  ( N `  ( T `  x ) ) ) ) )
2824, 27elab 2851 . . . . . 6  |-  ( 0  e.  { m  |  E. x  e.  ~H  ( ( normh `  x
)  <_  1  /\  m  =  ( N `  ( T `  x
) ) ) }  <->  E. x  e.  ~H  ( ( normh `  x
)  <_  1  /\  0  =  ( N `  ( T `  x
) ) ) )
2923, 28mpbir 202 . . . . 5  |-  0  e.  { m  |  E. x  e.  ~H  (
( normh `  x )  <_  1  /\  m  =  ( N `  ( T `  x )
) ) }
30 ne0i 3368 . . . . 5  |-  ( 0  e.  { m  |  E. x  e.  ~H  ( ( normh `  x
)  <_  1  /\  m  =  ( N `  ( T `  x
) ) ) }  ->  { m  |  E. x  e.  ~H  ( ( normh `  x
)  <_  1  /\  m  =  ( N `  ( T `  x
) ) ) }  =/=  (/) )
3129, 30ax-mp 10 . . . 4  |-  { m  |  E. x  e.  ~H  ( ( normh `  x
)  <_  1  /\  m  =  ( N `  ( T `  x
) ) ) }  =/=  (/)
32 nmcex.1 . . . . 5  |-  E. y  e.  RR+  A. z  e. 
~H  ( ( normh `  z )  <  y  ->  ( N `  ( T `  z )
)  <  1 )
33 2rp 10238 . . . . . . . . . 10  |-  2  e.  RR+
34 rpdivcl 10255 . . . . . . . . . 10  |-  ( ( 2  e.  RR+  /\  y  e.  RR+ )  ->  (
2  /  y )  e.  RR+ )
3533, 34mpan 654 . . . . . . . . 9  |-  ( y  e.  RR+  ->  ( 2  /  y )  e.  RR+ )
3635rpred 10269 . . . . . . . 8  |-  ( y  e.  RR+  ->  ( 2  /  y )  e.  RR )
3736adantr 453 . . . . . . 7  |-  ( ( y  e.  RR+  /\  A. z  e.  ~H  (
( normh `  z )  <  y  ->  ( N `  ( T `  z
) )  <  1
) )  ->  (
2  /  y )  e.  RR )
38 rpre 10239 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( y  e.  RR+  ->  y  e.  RR )
3938adantr 453 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( y  e.  RR+  /\  (
x  e.  ~H  /\  ( normh `  x )  <_  1 ) )  -> 
y  e.  RR )
4039rehalfcld 9837 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( y  e.  RR+  /\  (
x  e.  ~H  /\  ( normh `  x )  <_  1 ) )  -> 
( y  /  2
)  e.  RR )
4140recnd 8741 . . . . . . . . . . . . . . . . . . 19  |-  ( ( y  e.  RR+  /\  (
x  e.  ~H  /\  ( normh `  x )  <_  1 ) )  -> 
( y  /  2
)  e.  CC )
42 simprl 735 . . . . . . . . . . . . . . . . . . 19  |-  ( ( y  e.  RR+  /\  (
x  e.  ~H  /\  ( normh `  x )  <_  1 ) )  ->  x  e.  ~H )
43 hvmulcl 21423 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( y  /  2
)  e.  CC  /\  x  e.  ~H )  ->  ( ( y  / 
2 )  .h  x
)  e.  ~H )
4441, 42, 43syl2anc 645 . . . . . . . . . . . . . . . . . 18  |-  ( ( y  e.  RR+  /\  (
x  e.  ~H  /\  ( normh `  x )  <_  1 ) )  -> 
( ( y  / 
2 )  .h  x
)  e.  ~H )
45 normcl 21534 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( y  /  2
)  .h  x )  e.  ~H  ->  ( normh `  ( ( y  /  2 )  .h  x ) )  e.  RR )
4644, 45syl 17 . . . . . . . . . . . . . . . . 17  |-  ( ( y  e.  RR+  /\  (
x  e.  ~H  /\  ( normh `  x )  <_  1 ) )  -> 
( normh `  ( (
y  /  2 )  .h  x ) )  e.  RR )
47 simprr 736 . . . . . . . . . . . . . . . . . . 19  |-  ( ( y  e.  RR+  /\  (
x  e.  ~H  /\  ( normh `  x )  <_  1 ) )  -> 
( normh `  x )  <_  1 )
48 normcl 21534 . . . . . . . . . . . . . . . . . . . . 21  |-  ( x  e.  ~H  ->  ( normh `  x )  e.  RR )
4948ad2antrl 711 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( y  e.  RR+  /\  (
x  e.  ~H  /\  ( normh `  x )  <_  1 ) )  -> 
( normh `  x )  e.  RR )
50 1re 8717 . . . . . . . . . . . . . . . . . . . . 21  |-  1  e.  RR
5150a1i 12 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( y  e.  RR+  /\  (
x  e.  ~H  /\  ( normh `  x )  <_  1 ) )  -> 
1  e.  RR )
52 rphalfcl 10257 . . . . . . . . . . . . . . . . . . . . 21  |-  ( y  e.  RR+  ->  ( y  /  2 )  e.  RR+ )
5352adantr 453 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( y  e.  RR+  /\  (
x  e.  ~H  /\  ( normh `  x )  <_  1 ) )  -> 
( y  /  2
)  e.  RR+ )
5449, 51, 53lemul2d 10309 . . . . . . . . . . . . . . . . . . 19  |-  ( ( y  e.  RR+  /\  (
x  e.  ~H  /\  ( normh `  x )  <_  1 ) )  -> 
( ( normh `  x
)  <_  1  <->  ( (
y  /  2 )  x.  ( normh `  x
) )  <_  (
( y  /  2
)  x.  1 ) ) )
5547, 54mpbid 203 . . . . . . . . . . . . . . . . . 18  |-  ( ( y  e.  RR+  /\  (
x  e.  ~H  /\  ( normh `  x )  <_  1 ) )  -> 
( ( y  / 
2 )  x.  ( normh `  x ) )  <_  ( ( y  /  2 )  x.  1 ) )
56 rpcn 10241 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( y  /  2 )  e.  RR+  ->  ( y  /  2 )  e.  CC )
57 norm-iii 21549 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( y  /  2
)  e.  CC  /\  x  e.  ~H )  ->  ( normh `  ( (
y  /  2 )  .h  x ) )  =  ( ( abs `  ( y  /  2
) )  x.  ( normh `  x ) ) )
5856, 57sylan 459 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( y  /  2
)  e.  RR+  /\  x  e.  ~H )  ->  ( normh `  ( ( y  /  2 )  .h  x ) )  =  ( ( abs `  (
y  /  2 ) )  x.  ( normh `  x ) ) )
59 rpre 10239 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( y  /  2 )  e.  RR+  ->  ( y  /  2 )  e.  RR )
60 rpge0 10245 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( y  /  2 )  e.  RR+  ->  0  <_ 
( y  /  2
) )
6159, 60absidd 11782 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( y  /  2 )  e.  RR+  ->  ( abs `  ( y  /  2
) )  =  ( y  /  2 ) )
6261oveq1d 5725 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( y  /  2 )  e.  RR+  ->  ( ( abs `  ( y  /  2 ) )  x.  ( normh `  x
) )  =  ( ( y  /  2
)  x.  ( normh `  x ) ) )
6362adantr 453 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( y  /  2
)  e.  RR+  /\  x  e.  ~H )  ->  (
( abs `  (
y  /  2 ) )  x.  ( normh `  x ) )  =  ( ( y  / 
2 )  x.  ( normh `  x ) ) )
6458, 63eqtr2d 2286 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( y  /  2
)  e.  RR+  /\  x  e.  ~H )  ->  (
( y  /  2
)  x.  ( normh `  x ) )  =  ( normh `  ( (
y  /  2 )  .h  x ) ) )
6553, 42, 64syl2anc 645 . . . . . . . . . . . . . . . . . 18  |-  ( ( y  e.  RR+  /\  (
x  e.  ~H  /\  ( normh `  x )  <_  1 ) )  -> 
( ( y  / 
2 )  x.  ( normh `  x ) )  =  ( normh `  (
( y  /  2
)  .h  x ) ) )
6641mulid1d 8732 . . . . . . . . . . . . . . . . . 18  |-  ( ( y  e.  RR+  /\  (
x  e.  ~H  /\  ( normh `  x )  <_  1 ) )  -> 
( ( y  / 
2 )  x.  1 )  =  ( y  /  2 ) )
6755, 65, 663brtr3d 3949 . . . . . . . . . . . . . . . . 17  |-  ( ( y  e.  RR+  /\  (
x  e.  ~H  /\  ( normh `  x )  <_  1 ) )  -> 
( normh `  ( (
y  /  2 )  .h  x ) )  <_  ( y  / 
2 ) )
68 rphalflt 10259 . . . . . . . . . . . . . . . . . 18  |-  ( y  e.  RR+  ->  ( y  /  2 )  < 
y )
6968adantr 453 . . . . . . . . . . . . . . . . 17  |-  ( ( y  e.  RR+  /\  (
x  e.  ~H  /\  ( normh `  x )  <_  1 ) )  -> 
( y  /  2
)  <  y )
7046, 40, 39, 67, 69lelttrd 8854 . . . . . . . . . . . . . . . 16  |-  ( ( y  e.  RR+  /\  (
x  e.  ~H  /\  ( normh `  x )  <_  1 ) )  -> 
( normh `  ( (
y  /  2 )  .h  x ) )  <  y )
71 fveq2 5377 . . . . . . . . . . . . . . . . . . . 20  |-  ( z  =  ( ( y  /  2 )  .h  x )  ->  ( normh `  z )  =  ( normh `  ( (
y  /  2 )  .h  x ) ) )
7271breq1d 3930 . . . . . . . . . . . . . . . . . . 19  |-  ( z  =  ( ( y  /  2 )  .h  x )  ->  (
( normh `  z )  <  y  <->  ( normh `  (
( y  /  2
)  .h  x ) )  <  y ) )
73 fveq2 5377 . . . . . . . . . . . . . . . . . . . . 21  |-  ( z  =  ( ( y  /  2 )  .h  x )  ->  ( T `  z )  =  ( T `  ( ( y  / 
2 )  .h  x
) ) )
7473fveq2d 5381 . . . . . . . . . . . . . . . . . . . 20  |-  ( z  =  ( ( y  /  2 )  .h  x )  ->  ( N `  ( T `  z ) )  =  ( N `  ( T `  ( (
y  /  2 )  .h  x ) ) ) )
7574breq1d 3930 . . . . . . . . . . . . . . . . . . 19  |-  ( z  =  ( ( y  /  2 )  .h  x )  ->  (
( N `  ( T `  z )
)  <  1  <->  ( N `  ( T `  (
( y  /  2
)  .h  x ) ) )  <  1
) )
7672, 75imbi12d 313 . . . . . . . . . . . . . . . . . 18  |-  ( z  =  ( ( y  /  2 )  .h  x )  ->  (
( ( normh `  z
)  <  y  ->  ( N `  ( T `
 z ) )  <  1 )  <->  ( ( normh `  ( ( y  /  2 )  .h  x ) )  < 
y  ->  ( N `  ( T `  (
( y  /  2
)  .h  x ) ) )  <  1
) ) )
7776rcla4v 2817 . . . . . . . . . . . . . . . . 17  |-  ( ( ( y  /  2
)  .h  x )  e.  ~H  ->  ( A. z  e.  ~H  ( ( normh `  z
)  <  y  ->  ( N `  ( T `
 z ) )  <  1 )  -> 
( ( normh `  (
( y  /  2
)  .h  x ) )  <  y  -> 
( N `  ( T `  ( (
y  /  2 )  .h  x ) ) )  <  1 ) ) )
7844, 77syl 17 . . . . . . . . . . . . . . . 16  |-  ( ( y  e.  RR+  /\  (
x  e.  ~H  /\  ( normh `  x )  <_  1 ) )  -> 
( A. z  e. 
~H  ( ( normh `  z )  <  y  ->  ( N `  ( T `  z )
)  <  1 )  ->  ( ( normh `  ( ( y  / 
2 )  .h  x
) )  <  y  ->  ( N `  ( T `  ( (
y  /  2 )  .h  x ) ) )  <  1 ) ) )
7970, 78mpid 39 . . . . . . . . . . . . . . 15  |-  ( ( y  e.  RR+  /\  (
x  e.  ~H  /\  ( normh `  x )  <_  1 ) )  -> 
( A. z  e. 
~H  ( ( normh `  z )  <  y  ->  ( N `  ( T `  z )
)  <  1 )  ->  ( N `  ( T `  ( ( y  /  2 )  .h  x ) ) )  <  1 ) )
802ad2antrl 711 . . . . . . . . . . . . . . . . . 18  |-  ( ( y  e.  RR+  /\  (
x  e.  ~H  /\  ( normh `  x )  <_  1 ) )  -> 
( N `  ( T `  x )
)  e.  RR )
8180, 51, 53ltmuldiv2d 10313 . . . . . . . . . . . . . . . . 17  |-  ( ( y  e.  RR+  /\  (
x  e.  ~H  /\  ( normh `  x )  <_  1 ) )  -> 
( ( ( y  /  2 )  x.  ( N `  ( T `  x )
) )  <  1  <->  ( N `  ( T `
 x ) )  <  ( 1  / 
( y  /  2
) ) ) )
8253rprecred 10280 . . . . . . . . . . . . . . . . . 18  |-  ( ( y  e.  RR+  /\  (
x  e.  ~H  /\  ( normh `  x )  <_  1 ) )  -> 
( 1  /  (
y  /  2 ) )  e.  RR )
83 ltle 8790 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( N `  ( T `  x )
)  e.  RR  /\  ( 1  /  (
y  /  2 ) )  e.  RR )  ->  ( ( N `
 ( T `  x ) )  < 
( 1  /  (
y  /  2 ) )  ->  ( N `  ( T `  x
) )  <_  (
1  /  ( y  /  2 ) ) ) )
8480, 82, 83syl2anc 645 . . . . . . . . . . . . . . . . 17  |-  ( ( y  e.  RR+  /\  (
x  e.  ~H  /\  ( normh `  x )  <_  1 ) )  -> 
( ( N `  ( T `  x ) )  <  ( 1  /  ( y  / 
2 ) )  -> 
( N `  ( T `  x )
)  <_  ( 1  /  ( y  / 
2 ) ) ) )
8581, 84sylbid 208 . . . . . . . . . . . . . . . 16  |-  ( ( y  e.  RR+  /\  (
x  e.  ~H  /\  ( normh `  x )  <_  1 ) )  -> 
( ( ( y  /  2 )  x.  ( N `  ( T `  x )
) )  <  1  ->  ( N `  ( T `  x )
)  <_  ( 1  /  ( y  / 
2 ) ) ) )
86 nmcex.5 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( y  /  2
)  e.  RR+  /\  x  e.  ~H )  ->  (
( y  /  2
)  x.  ( N `
 ( T `  x ) ) )  =  ( N `  ( T `  ( ( y  /  2 )  .h  x ) ) ) )
8753, 42, 86syl2anc 645 . . . . . . . . . . . . . . . . 17  |-  ( ( y  e.  RR+  /\  (
x  e.  ~H  /\  ( normh `  x )  <_  1 ) )  -> 
( ( y  / 
2 )  x.  ( N `  ( T `  x ) ) )  =  ( N `  ( T `  ( ( y  /  2 )  .h  x ) ) ) )
8887breq1d 3930 . . . . . . . . . . . . . . . 16  |-  ( ( y  e.  RR+  /\  (
x  e.  ~H  /\  ( normh `  x )  <_  1 ) )  -> 
( ( ( y  /  2 )  x.  ( N `  ( T `  x )
) )  <  1  <->  ( N `  ( T `
 ( ( y  /  2 )  .h  x ) ) )  <  1 ) )
89 rpcn 10241 . . . . . . . . . . . . . . . . . . 19  |-  ( y  e.  RR+  ->  y  e.  CC )
90 rpne0 10248 . . . . . . . . . . . . . . . . . . 19  |-  ( y  e.  RR+  ->  y  =/=  0 )
91 2cn 9696 . . . . . . . . . . . . . . . . . . . 20  |-  2  e.  CC
92 2ne0 9709 . . . . . . . . . . . . . . . . . . . 20  |-  2  =/=  0
93 recdiv 9346 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( y  e.  CC  /\  y  =/=  0 )  /\  ( 2  e.  CC  /\  2  =/=  0 ) )  -> 
( 1  /  (
y  /  2 ) )  =  ( 2  /  y ) )
9491, 92, 93mpanr12 669 . . . . . . . . . . . . . . . . . . 19  |-  ( ( y  e.  CC  /\  y  =/=  0 )  -> 
( 1  /  (
y  /  2 ) )  =  ( 2  /  y ) )
9589, 90, 94syl2anc 645 . . . . . . . . . . . . . . . . . 18  |-  ( y  e.  RR+  ->  ( 1  /  ( y  / 
2 ) )  =  ( 2  /  y
) )
9695adantr 453 . . . . . . . . . . . . . . . . 17  |-  ( ( y  e.  RR+  /\  (
x  e.  ~H  /\  ( normh `  x )  <_  1 ) )  -> 
( 1  /  (
y  /  2 ) )  =  ( 2  /  y ) )
9796breq2d 3932 . . . . . . . . . . . . . . . 16  |-  ( ( y  e.  RR+  /\  (
x  e.  ~H  /\  ( normh `  x )  <_  1 ) )  -> 
( ( N `  ( T `  x ) )  <_  ( 1  /  ( y  / 
2 ) )  <->  ( N `  ( T `  x
) )  <_  (
2  /  y ) ) )
9885, 88, 973imtr3d 260 . . . . . . . . . . . . . . 15  |-  ( ( y  e.  RR+  /\  (
x  e.  ~H  /\  ( normh `  x )  <_  1 ) )  -> 
( ( N `  ( T `  ( ( y  /  2 )  .h  x ) ) )  <  1  -> 
( N `  ( T `  x )
)  <_  ( 2  /  y ) ) )
9979, 98syld 42 . . . . . . . . . . . . . 14  |-  ( ( y  e.  RR+  /\  (
x  e.  ~H  /\  ( normh `  x )  <_  1 ) )  -> 
( A. z  e. 
~H  ( ( normh `  z )  <  y  ->  ( N `  ( T `  z )
)  <  1 )  ->  ( N `  ( T `  x ) )  <_  ( 2  /  y ) ) )
10099imp 420 . . . . . . . . . . . . 13  |-  ( ( ( y  e.  RR+  /\  ( x  e.  ~H  /\  ( normh `  x )  <_  1 ) )  /\  A. z  e.  ~H  (
( normh `  z )  <  y  ->  ( N `  ( T `  z
) )  <  1
) )  ->  ( N `  ( T `  x ) )  <_ 
( 2  /  y
) )
101100an32s 782 . . . . . . . . . . . 12  |-  ( ( ( y  e.  RR+  /\ 
A. z  e.  ~H  ( ( normh `  z
)  <  y  ->  ( N `  ( T `
 z ) )  <  1 ) )  /\  ( x  e. 
~H  /\  ( normh `  x )  <_  1
) )  ->  ( N `  ( T `  x ) )  <_ 
( 2  /  y
) )
102101anassrs 632 . . . . . . . . . . 11  |-  ( ( ( ( y  e.  RR+  /\  A. z  e. 
~H  ( ( normh `  z )  <  y  ->  ( N `  ( T `  z )
)  <  1 ) )  /\  x  e. 
~H )  /\  ( normh `  x )  <_ 
1 )  ->  ( N `  ( T `  x ) )  <_ 
( 2  /  y
) )
103 breq1 3923 . . . . . . . . . . 11  |-  ( n  =  ( N `  ( T `  x ) )  ->  ( n  <_  ( 2  /  y
)  <->  ( N `  ( T `  x ) )  <_  ( 2  /  y ) ) )
104102, 103syl5ibrcom 215 . . . . . . . . . 10  |-  ( ( ( ( y  e.  RR+  /\  A. z  e. 
~H  ( ( normh `  z )  <  y  ->  ( N `  ( T `  z )
)  <  1 ) )  /\  x  e. 
~H )  /\  ( normh `  x )  <_ 
1 )  ->  (
n  =  ( N `
 ( T `  x ) )  ->  n  <_  ( 2  / 
y ) ) )
105104expimpd 589 . . . . . . . . 9  |-  ( ( ( y  e.  RR+  /\ 
A. z  e.  ~H  ( ( normh `  z
)  <  y  ->  ( N `  ( T `
 z ) )  <  1 ) )  /\  x  e.  ~H )  ->  ( ( (
normh `  x )  <_ 
1  /\  n  =  ( N `  ( T `
 x ) ) )  ->  n  <_  ( 2  /  y ) ) )
106105rexlimdva 2629 . . . . . . . 8  |-  ( ( y  e.  RR+  /\  A. z  e.  ~H  (
( normh `  z )  <  y  ->  ( N `  ( T `  z
) )  <  1
) )  ->  ( E. x  e.  ~H  ( ( normh `  x
)  <_  1  /\  n  =  ( N `  ( T `  x
) ) )  ->  n  <_  ( 2  / 
y ) ) )
107106alrimiv 2012 . . . . . . 7  |-  ( ( y  e.  RR+  /\  A. z  e.  ~H  (
( normh `  z )  <  y  ->  ( N `  ( T `  z
) )  <  1
) )  ->  A. n
( E. x  e. 
~H  ( ( normh `  x )  <_  1  /\  n  =  ( N `  ( T `  x ) ) )  ->  n  <_  (
2  /  y ) ) )
108 eqeq1 2259 . . . . . . . . . . . 12  |-  ( m  =  n  ->  (
m  =  ( N `
 ( T `  x ) )  <->  n  =  ( N `  ( T `
 x ) ) ) )
109108anbi2d 687 . . . . . . . . . . 11  |-  ( m  =  n  ->  (
( ( normh `  x
)  <_  1  /\  m  =  ( N `  ( T `  x
) ) )  <->  ( ( normh `  x )  <_ 
1  /\  n  =  ( N `  ( T `
 x ) ) ) ) )
110109rexbidv 2528 . . . . . . . . . 10  |-  ( m  =  n  ->  ( E. x  e.  ~H  ( ( normh `  x
)  <_  1  /\  m  =  ( N `  ( T `  x
) ) )  <->  E. x  e.  ~H  ( ( normh `  x )  <_  1  /\  n  =  ( N `  ( T `  x ) ) ) ) )
111110ralab 2863 . . . . . . . . 9  |-  ( A. n  e.  { m  |  E. x  e.  ~H  ( ( normh `  x
)  <_  1  /\  m  =  ( N `  ( T `  x
) ) ) } n  <_  z  <->  A. n
( E. x  e. 
~H  ( ( normh `  x )  <_  1  /\  n  =  ( N `  ( T `  x ) ) )  ->  n  <_  z
) )
112 breq2 3924 . . . . . . . . . . 11  |-  ( z  =  ( 2  / 
y )  ->  (
n  <_  z  <->  n  <_  ( 2  /  y ) ) )
113112imbi2d 309 . . . . . . . . . 10  |-  ( z  =  ( 2  / 
y )  ->  (
( E. x  e. 
~H  ( ( normh `  x )  <_  1  /\  n  =  ( N `  ( T `  x ) ) )  ->  n  <_  z
)  <->  ( E. x  e.  ~H  ( ( normh `  x )  <_  1  /\  n  =  ( N `  ( T `  x ) ) )  ->  n  <_  (
2  /  y ) ) ) )
114113albidv 2004 . . . . . . . . 9  |-  ( z  =  ( 2  / 
y )  ->  ( A. n ( E. x  e.  ~H  ( ( normh `  x )  <_  1  /\  n  =  ( N `  ( T `  x ) ) )  ->  n  <_  z
)  <->  A. n ( E. x  e.  ~H  (
( normh `  x )  <_  1  /\  n  =  ( N `  ( T `  x )
) )  ->  n  <_  ( 2  /  y
) ) ) )
115111, 114syl5bb 250 . . . . . . . 8  |-  ( z  =  ( 2  / 
y )  ->  ( A. n  e.  { m  |  E. x  e.  ~H  ( ( normh `  x
)  <_  1  /\  m  =  ( N `  ( T `  x
) ) ) } n  <_  z  <->  A. n
( E. x  e. 
~H  ( ( normh `  x )  <_  1  /\  n  =  ( N `  ( T `  x ) ) )  ->  n  <_  (
2  /  y ) ) ) )
116115rcla4ev 2821 . . . . . . 7  |-  ( ( ( 2  /  y
)  e.  RR  /\  A. n ( E. x  e.  ~H  ( ( normh `  x )  <_  1  /\  n  =  ( N `  ( T `  x ) ) )  ->  n  <_  (
2  /  y ) ) )  ->  E. z  e.  RR  A. n  e. 
{ m  |  E. x  e.  ~H  (
( normh `  x )  <_  1  /\  m  =  ( N `  ( T `  x )
) ) } n  <_  z )
11737, 107, 116syl2anc 645 . . . . . 6  |-  ( ( y  e.  RR+  /\  A. z  e.  ~H  (
( normh `  z )  <  y  ->  ( N `  ( T `  z
) )  <  1
) )  ->  E. z  e.  RR  A. n  e. 
{ m  |  E. x  e.  ~H  (
( normh `  x )  <_  1  /\  m  =  ( N `  ( T `  x )
) ) } n  <_  z )
118117rexlimiva 2624 . . . . 5  |-  ( E. y  e.  RR+  A. z  e.  ~H  ( ( normh `  z )  <  y  ->  ( N `  ( T `  z )
)  <  1 )  ->  E. z  e.  RR  A. n  e.  { m  |  E. x  e.  ~H  ( ( normh `  x
)  <_  1  /\  m  =  ( N `  ( T `  x
) ) ) } n  <_  z )
11932, 118ax-mp 10 . . . 4  |-  E. z  e.  RR  A. n  e. 
{ m  |  E. x  e.  ~H  (
( normh `  x )  <_  1  /\  m  =  ( N `  ( T `  x )
) ) } n  <_  z
120 supxrre 10524 . . . 4  |-  ( ( { m  |  E. x  e.  ~H  (
( normh `  x )  <_  1  /\  m  =  ( N `  ( T `  x )
) ) }  C_  RR  /\  { m  |  E. x  e.  ~H  ( ( normh `  x
)  <_  1  /\  m  =  ( N `  ( T `  x
) ) ) }  =/=  (/)  /\  E. z  e.  RR  A. n  e. 
{ m  |  E. x  e.  ~H  (
( normh `  x )  <_  1  /\  m  =  ( N `  ( T `  x )
) ) } n  <_  z )  ->  sup ( { m  |  E. x  e.  ~H  (
( normh `  x )  <_  1  /\  m  =  ( N `  ( T `  x )
) ) } ,  RR* ,  <  )  =  sup ( { m  |  E. x  e.  ~H  ( ( normh `  x
)  <_  1  /\  m  =  ( N `  ( T `  x
) ) ) } ,  RR ,  <  ) )
1218, 31, 119, 120mp3an 1282 . . 3  |-  sup ( { m  |  E. x  e.  ~H  (
( normh `  x )  <_  1  /\  m  =  ( N `  ( T `  x )
) ) } ,  RR* ,  <  )  =  sup ( { m  |  E. x  e.  ~H  ( ( normh `  x
)  <_  1  /\  m  =  ( N `  ( T `  x
) ) ) } ,  RR ,  <  )
1221, 121eqtri 2273 . 2  |-  ( S `
 T )  =  sup ( { m  |  E. x  e.  ~H  ( ( normh `  x
)  <_  1  /\  m  =  ( N `  ( T `  x
) ) ) } ,  RR ,  <  )
123 suprcl 9594 . . 3  |-  ( ( { m  |  E. x  e.  ~H  (
( normh `  x )  <_  1  /\  m  =  ( N `  ( T `  x )
) ) }  C_  RR  /\  { m  |  E. x  e.  ~H  ( ( normh `  x
)  <_  1  /\  m  =  ( N `  ( T `  x
) ) ) }  =/=  (/)  /\  E. z  e.  RR  A. n  e. 
{ m  |  E. x  e.  ~H  (
( normh `  x )  <_  1  /\  m  =  ( N `  ( T `  x )
) ) } n  <_  z )  ->  sup ( { m  |  E. x  e.  ~H  (
( normh `  x )  <_  1  /\  m  =  ( N `  ( T `  x )
) ) } ,  RR ,  <  )  e.  RR )
1248, 31, 119, 123mp3an 1282 . 2  |-  sup ( { m  |  E. x  e.  ~H  (
( normh `  x )  <_  1  /\  m  =  ( N `  ( T `  x )
) ) } ,  RR ,  <  )  e.  RR
125122, 124eqeltri 2323 1  |-  ( S `
 T )  e.  RR
Colors of variables: wff set class
Syntax hints:    -> wi 6    /\ wa 360   A.wal 1532    = wceq 1619    e. wcel 1621   {cab 2239    =/= wne 2412   A.wral 2509   E.wrex 2510    C_ wss 3078   (/)c0 3362   class class class wbr 3920   ` cfv 4592  (class class class)co 5710   supcsup 7077   CCcc 8615   RRcr 8616   0cc0 8617   1c1 8618    x. cmul 8622   RR*cxr 8746    < clt 8747    <_ cle 8748    / cdiv 9303   2c2 9675   RR+crp 10233   abscabs 11596   ~Hchil 21329    .h csm 21331   normhcno 21333   0hc0v 21334
This theorem is referenced by:  nmcopexi  22437  nmcfnexi  22461
This theorem was proved from axioms:  ax-1 7  ax-2 8  ax-3 9  ax-mp 10  ax-5 1533  ax-6 1534  ax-7 1535  ax-gen 1536  ax-8 1623  ax-11 1624  ax-13 1625  ax-14 1626  ax-17 1628  ax-12o 1664  ax-10 1678  ax-9 1684  ax-4 1692  ax-16 1926  ax-ext 2234  ax-sep 4038  ax-nul 4046  ax-pow 4082  ax-pr 4108  ax-un 4403  ax-cnex 8673  ax-resscn 8674  ax-1cn 8675  ax-icn 8676  ax-addcl 8677  ax-addrcl 8678  ax-mulcl 8679  ax-mulrcl 8680  ax-mulcom 8681  ax-addass 8682  ax-mulass 8683  ax-distr 8684  ax-i2m1 8685  ax-1ne0 8686  ax-1rid 8687  ax-rnegex 8688  ax-rrecex 8689  ax-cnre 8690  ax-pre-lttri 8691  ax-pre-lttrn 8692  ax-pre-ltadd 8693  ax-pre-mulgt0 8694  ax-pre-sup 8695  ax-hv0cl 21413  ax-hfvmul 21415  ax-hvmul0 21420  ax-hfi 21488  ax-his1 21491  ax-his3 21493  ax-his4 21494
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3or 940  df-3an 941  df-tru 1315  df-ex 1538  df-nf 1540  df-sb 1883  df-eu 2118  df-mo 2119  df-clab 2240  df-cleq 2246  df-clel 2249  df-nfc 2374  df-ne 2414  df-nel 2415  df-ral 2513  df-rex 2514  df-reu 2515  df-rab 2516  df-v 2729  df-sbc 2922  df-csb 3010  df-dif 3081  df-un 3083  df-in 3085  df-ss 3089  df-pss 3091  df-nul 3363  df-if 3471  df-pw 3532  df-sn 3550  df-pr 3551  df-tp 3552  df-op 3553  df-uni 3728  df-iun 3805  df-br 3921  df-opab 3975  df-mpt 3976  df-tr 4011  df-eprel 4198  df-id 4202  df-po 4207  df-so 4208  df-fr 4245  df-we 4247  df-ord 4288  df-on 4289  df-lim 4290  df-suc 4291  df-om 4548  df-xp 4594  df-rel 4595  df-cnv 4596  df-co 4597  df-dm 4598  df-rn 4599  df-res 4600  df-ima 4601  df-fun 4602  df-fn 4603  df-f 4604  df-f1 4605  df-fo 4606  df-f1o 4607  df-fv 4608  df-ov 5713  df-oprab 5714  df-mpt2 5715  df-2nd 5975  df-iota 6143  df-riota 6190  df-recs 6274  df-rdg 6309  df-er 6546  df-en 6750  df-dom 6751  df-sdom 6752  df-sup 7078  df-pnf 8749  df-mnf 8750  df-xr 8751  df-ltxr 8752  df-le 8753  df-sub 8919  df-neg 8920  df-div 9304  df-n 9627  df-2 9684  df-3 9685  df-n0 9845  df-z 9904  df-uz 10110  df-rp 10234  df-seq 10925  df-exp 10983  df-cj 11461  df-re 11462  df-im 11463  df-sqr 11597  df-abs 11598  df-hnorm 21378
  Copyright terms: Public domain W3C validator