Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  nfcrii Unicode version

Theorem nfcrii 2378
 Description: Consequence of the not-free predicate. (Contributed by Mario Carneiro, 11-Aug-2016.)
Hypothesis
Ref Expression
nfcri.1
Assertion
Ref Expression
nfcrii
Distinct variable group:   ,
Allowed substitution hints:   (,)

Proof of Theorem nfcrii
StepHypRef Expression
1 nfcri.1 . . . 4
2 nfcr 2377 . . . 4
31, 2ax-mp 10 . . 3
43nfri 1703 . 2
54hblem 2353 1
 Colors of variables: wff set class Syntax hints:   wi 6  wal 1532  wnf 1539   wcel 1621  wnfc 2372 This theorem is referenced by:  nfcri  2379  bnj1230  27524  bnj1000  27662  bnj1204  27731  bnj1307  27742  bnj1311  27743  bnj1398  27753  bnj1466  27772  bnj1467  27773  bnj1523  27790 This theorem was proved from axioms:  ax-1 7  ax-2 8  ax-3 9  ax-mp 10  ax-5 1533  ax-6 1534  ax-7 1535  ax-gen 1536  ax-8 1623  ax-11 1624  ax-17 1628  ax-12o 1664  ax-10 1678  ax-9 1684  ax-4 1692  ax-16 1926  ax-ext 2234 This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-tru 1315  df-ex 1538  df-nf 1540  df-sb 1883  df-cleq 2246  df-clel 2249  df-nfc 2374
 Copyright terms: Public domain W3C validator