Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  monotuz Unicode version

Theorem monotuz 26192
Description: A function defined on a set of upper integers which increases at every adjacent pair is globally strictly monotonic by induction. (Contributed by Stefan O'Rear, 24-Sep-2014.)
Hypotheses
Ref Expression
monotuz.1  |-  ( (
ph  /\  y  e.  H )  ->  F  <  G )
monotuz.2  |-  ( (
ph  /\  x  e.  H )  ->  C  e.  RR )
monotuz.3  |-  H  =  ( ZZ>= `  I )
monotuz.4  |-  ( x  =  ( y  +  1 )  ->  C  =  G )
monotuz.5  |-  ( x  =  y  ->  C  =  F )
monotuz.6  |-  ( x  =  A  ->  C  =  D )
monotuz.7  |-  ( x  =  B  ->  C  =  E )
Assertion
Ref Expression
monotuz  |-  ( (
ph  /\  ( A  e.  H  /\  B  e.  H ) )  -> 
( A  <  B  <->  D  <  E ) )
Distinct variable groups:    x, A, y    x, B, y    y, C    x, D, y    x, E, y    x, F    x, G    x, H, y    ph, x, y
Allowed substitution hints:    C( x)    F( y)    G( y)    I( x, y)

Proof of Theorem monotuz
StepHypRef Expression
1 csbeq1 3012 . . 3  |-  ( a  =  b  ->  [_ a  /  x ]_ C  = 
[_ b  /  x ]_ C )
2 csbeq1 3012 . . 3  |-  ( a  =  A  ->  [_ a  /  x ]_ C  = 
[_ A  /  x ]_ C )
3 csbeq1 3012 . . 3  |-  ( a  =  B  ->  [_ a  /  x ]_ C  = 
[_ B  /  x ]_ C )
4 monotuz.3 . . . 4  |-  H  =  ( ZZ>= `  I )
5 uzssz 10126 . . . . 5  |-  ( ZZ>= `  I )  C_  ZZ
6 zssre 9910 . . . . 5  |-  ZZ  C_  RR
75, 6sstri 3109 . . . 4  |-  ( ZZ>= `  I )  C_  RR
84, 7eqsstri 3129 . . 3  |-  H  C_  RR
9 nfv 1629 . . . . 5  |-  F/ x
( ph  /\  a  e.  H )
10 nfcsb1v 3041 . . . . . 6  |-  F/_ x [_ a  /  x ]_ C
1110nfel1 2395 . . . . 5  |-  F/ x [_ a  /  x ]_ C  e.  RR
129, 11nfim 1735 . . . 4  |-  F/ x
( ( ph  /\  a  e.  H )  ->  [_ a  /  x ]_ C  e.  RR )
13 eleq1 2313 . . . . . 6  |-  ( x  =  a  ->  (
x  e.  H  <->  a  e.  H ) )
1413anbi2d 687 . . . . 5  |-  ( x  =  a  ->  (
( ph  /\  x  e.  H )  <->  ( ph  /\  a  e.  H ) ) )
15 csbeq1a 3017 . . . . . 6  |-  ( x  =  a  ->  C  =  [_ a  /  x ]_ C )
1615eleq1d 2319 . . . . 5  |-  ( x  =  a  ->  ( C  e.  RR  <->  [_ a  /  x ]_ C  e.  RR ) )
1714, 16imbi12d 313 . . . 4  |-  ( x  =  a  ->  (
( ( ph  /\  x  e.  H )  ->  C  e.  RR )  <-> 
( ( ph  /\  a  e.  H )  ->  [_ a  /  x ]_ C  e.  RR ) ) )
18 monotuz.2 . . . 4  |-  ( (
ph  /\  x  e.  H )  ->  C  e.  RR )
1912, 17, 18chvar 1878 . . 3  |-  ( (
ph  /\  a  e.  H )  ->  [_ a  /  x ]_ C  e.  RR )
20 simpl 445 . . . . . 6  |-  ( ( ( ph  /\  a  e.  H )  /\  a  <  b )  ->  ( ph  /\  a  e.  H
) )
2120adantlrr 704 . . . . 5  |-  ( ( ( ph  /\  (
a  e.  H  /\  b  e.  H )
)  /\  a  <  b )  ->  ( ph  /\  a  e.  H ) )
224, 5eqsstri 3129 . . . . . . 7  |-  H  C_  ZZ
23 simplrl 739 . . . . . . 7  |-  ( ( ( ph  /\  (
a  e.  H  /\  b  e.  H )
)  /\  a  <  b )  ->  a  e.  H )
2422, 23sseldi 3101 . . . . . 6  |-  ( ( ( ph  /\  (
a  e.  H  /\  b  e.  H )
)  /\  a  <  b )  ->  a  e.  ZZ )
25 simplrr 740 . . . . . . 7  |-  ( ( ( ph  /\  (
a  e.  H  /\  b  e.  H )
)  /\  a  <  b )  ->  b  e.  H )
2622, 25sseldi 3101 . . . . . 6  |-  ( ( ( ph  /\  (
a  e.  H  /\  b  e.  H )
)  /\  a  <  b )  ->  b  e.  ZZ )
27 simpr 449 . . . . . 6  |-  ( ( ( ph  /\  (
a  e.  H  /\  b  e.  H )
)  /\  a  <  b )  ->  a  <  b )
28 csbeq1 3012 . . . . . . . . 9  |-  ( c  =  ( a  +  1 )  ->  [_ c  /  x ]_ C  = 
[_ ( a  +  1 )  /  x ]_ C )
2928breq2d 3932 . . . . . . . 8  |-  ( c  =  ( a  +  1 )  ->  ( [_ a  /  x ]_ C  <  [_ c  /  x ]_ C  <->  [_ a  /  x ]_ C  <  [_ (
a  +  1 )  /  x ]_ C
) )
3029imbi2d 309 . . . . . . 7  |-  ( c  =  ( a  +  1 )  ->  (
( ( ph  /\  a  e.  H )  ->  [_ a  /  x ]_ C  <  [_ c  /  x ]_ C )  <-> 
( ( ph  /\  a  e.  H )  ->  [_ a  /  x ]_ C  <  [_ (
a  +  1 )  /  x ]_ C
) ) )
31 csbeq1 3012 . . . . . . . . 9  |-  ( c  =  d  ->  [_ c  /  x ]_ C  = 
[_ d  /  x ]_ C )
3231breq2d 3932 . . . . . . . 8  |-  ( c  =  d  ->  ( [_ a  /  x ]_ C  <  [_ c  /  x ]_ C  <->  [_ a  /  x ]_ C  <  [_ d  /  x ]_ C ) )
3332imbi2d 309 . . . . . . 7  |-  ( c  =  d  ->  (
( ( ph  /\  a  e.  H )  ->  [_ a  /  x ]_ C  <  [_ c  /  x ]_ C )  <-> 
( ( ph  /\  a  e.  H )  ->  [_ a  /  x ]_ C  <  [_ d  /  x ]_ C ) ) )
34 csbeq1 3012 . . . . . . . . 9  |-  ( c  =  ( d  +  1 )  ->  [_ c  /  x ]_ C  = 
[_ ( d  +  1 )  /  x ]_ C )
3534breq2d 3932 . . . . . . . 8  |-  ( c  =  ( d  +  1 )  ->  ( [_ a  /  x ]_ C  <  [_ c  /  x ]_ C  <->  [_ a  /  x ]_ C  <  [_ (
d  +  1 )  /  x ]_ C
) )
3635imbi2d 309 . . . . . . 7  |-  ( c  =  ( d  +  1 )  ->  (
( ( ph  /\  a  e.  H )  ->  [_ a  /  x ]_ C  <  [_ c  /  x ]_ C )  <-> 
( ( ph  /\  a  e.  H )  ->  [_ a  /  x ]_ C  <  [_ (
d  +  1 )  /  x ]_ C
) ) )
37 csbeq1 3012 . . . . . . . . 9  |-  ( c  =  b  ->  [_ c  /  x ]_ C  = 
[_ b  /  x ]_ C )
3837breq2d 3932 . . . . . . . 8  |-  ( c  =  b  ->  ( [_ a  /  x ]_ C  <  [_ c  /  x ]_ C  <->  [_ a  /  x ]_ C  <  [_ b  /  x ]_ C ) )
3938imbi2d 309 . . . . . . 7  |-  ( c  =  b  ->  (
( ( ph  /\  a  e.  H )  ->  [_ a  /  x ]_ C  <  [_ c  /  x ]_ C )  <-> 
( ( ph  /\  a  e.  H )  ->  [_ a  /  x ]_ C  <  [_ b  /  x ]_ C ) ) )
40 eleq1 2313 . . . . . . . . . 10  |-  ( y  =  a  ->  (
y  e.  H  <->  a  e.  H ) )
4140anbi2d 687 . . . . . . . . 9  |-  ( y  =  a  ->  (
( ph  /\  y  e.  H )  <->  ( ph  /\  a  e.  H ) ) )
42 vex 2730 . . . . . . . . . . . 12  |-  y  e. 
_V
43 nfcv 2385 . . . . . . . . . . . 12  |-  F/_ x F
44 monotuz.5 . . . . . . . . . . . 12  |-  ( x  =  y  ->  C  =  F )
4542, 43, 44csbief 3050 . . . . . . . . . . 11  |-  [_ y  /  x ]_ C  =  F
46 csbeq1 3012 . . . . . . . . . . 11  |-  ( y  =  a  ->  [_ y  /  x ]_ C  = 
[_ a  /  x ]_ C )
4745, 46syl5eqr 2299 . . . . . . . . . 10  |-  ( y  =  a  ->  F  =  [_ a  /  x ]_ C )
48 ovex 5735 . . . . . . . . . . . 12  |-  ( y  +  1 )  e. 
_V
49 nfcv 2385 . . . . . . . . . . . 12  |-  F/_ x G
50 monotuz.4 . . . . . . . . . . . 12  |-  ( x  =  ( y  +  1 )  ->  C  =  G )
5148, 49, 50csbief 3050 . . . . . . . . . . 11  |-  [_ (
y  +  1 )  /  x ]_ C  =  G
52 oveq1 5717 . . . . . . . . . . . 12  |-  ( y  =  a  ->  (
y  +  1 )  =  ( a  +  1 ) )
5352csbeq1d 3015 . . . . . . . . . . 11  |-  ( y  =  a  ->  [_ (
y  +  1 )  /  x ]_ C  =  [_ ( a  +  1 )  /  x ]_ C )
5451, 53syl5eqr 2299 . . . . . . . . . 10  |-  ( y  =  a  ->  G  =  [_ ( a  +  1 )  /  x ]_ C )
5547, 54breq12d 3933 . . . . . . . . 9  |-  ( y  =  a  ->  ( F  <  G  <->  [_ a  /  x ]_ C  <  [_ (
a  +  1 )  /  x ]_ C
) )
5641, 55imbi12d 313 . . . . . . . 8  |-  ( y  =  a  ->  (
( ( ph  /\  y  e.  H )  ->  F  <  G )  <-> 
( ( ph  /\  a  e.  H )  ->  [_ a  /  x ]_ C  <  [_ (
a  +  1 )  /  x ]_ C
) ) )
57 monotuz.1 . . . . . . . 8  |-  ( (
ph  /\  y  e.  H )  ->  F  <  G )
5856, 57vtoclg 2781 . . . . . . 7  |-  ( a  e.  ZZ  ->  (
( ph  /\  a  e.  H )  ->  [_ a  /  x ]_ C  <  [_ ( a  +  1 )  /  x ]_ C ) )
59193ad2ant2 982 . . . . . . . . . 10  |-  ( ( ( a  e.  ZZ  /\  d  e.  ZZ  /\  a  <  d )  /\  ( ph  /\  a  e.  H )  /\  [_ a  /  x ]_ C  <  [_ d  /  x ]_ C )  ->  [_ a  /  x ]_ C  e.  RR )
60 simp2l 986 . . . . . . . . . . 11  |-  ( ( ( a  e.  ZZ  /\  d  e.  ZZ  /\  a  <  d )  /\  ( ph  /\  a  e.  H )  /\  [_ a  /  x ]_ C  <  [_ d  /  x ]_ C )  ->  ph )
61 zre 9907 . . . . . . . . . . . . . . . . 17  |-  ( a  e.  ZZ  ->  a  e.  RR )
62613ad2ant1 981 . . . . . . . . . . . . . . . 16  |-  ( ( a  e.  ZZ  /\  d  e.  ZZ  /\  a  <  d )  ->  a  e.  RR )
63 zre 9907 . . . . . . . . . . . . . . . . 17  |-  ( d  e.  ZZ  ->  d  e.  RR )
64633ad2ant2 982 . . . . . . . . . . . . . . . 16  |-  ( ( a  e.  ZZ  /\  d  e.  ZZ  /\  a  <  d )  ->  d  e.  RR )
65 simp3 962 . . . . . . . . . . . . . . . 16  |-  ( ( a  e.  ZZ  /\  d  e.  ZZ  /\  a  <  d )  ->  a  <  d )
6662, 64, 65ltled 8847 . . . . . . . . . . . . . . 15  |-  ( ( a  e.  ZZ  /\  d  e.  ZZ  /\  a  <  d )  ->  a  <_  d )
67663ad2ant1 981 . . . . . . . . . . . . . 14  |-  ( ( ( a  e.  ZZ  /\  d  e.  ZZ  /\  a  <  d )  /\  ( ph  /\  a  e.  H )  /\  [_ a  /  x ]_ C  <  [_ d  /  x ]_ C )  ->  a  <_  d )
68 simp11 990 . . . . . . . . . . . . . . 15  |-  ( ( ( a  e.  ZZ  /\  d  e.  ZZ  /\  a  <  d )  /\  ( ph  /\  a  e.  H )  /\  [_ a  /  x ]_ C  <  [_ d  /  x ]_ C )  ->  a  e.  ZZ )
69 simp12 991 . . . . . . . . . . . . . . 15  |-  ( ( ( a  e.  ZZ  /\  d  e.  ZZ  /\  a  <  d )  /\  ( ph  /\  a  e.  H )  /\  [_ a  /  x ]_ C  <  [_ d  /  x ]_ C )  ->  d  e.  ZZ )
70 eluz 10120 . . . . . . . . . . . . . . 15  |-  ( ( a  e.  ZZ  /\  d  e.  ZZ )  ->  ( d  e.  (
ZZ>= `  a )  <->  a  <_  d ) )
7168, 69, 70syl2anc 645 . . . . . . . . . . . . . 14  |-  ( ( ( a  e.  ZZ  /\  d  e.  ZZ  /\  a  <  d )  /\  ( ph  /\  a  e.  H )  /\  [_ a  /  x ]_ C  <  [_ d  /  x ]_ C )  ->  (
d  e.  ( ZZ>= `  a )  <->  a  <_  d ) )
7267, 71mpbird 225 . . . . . . . . . . . . 13  |-  ( ( ( a  e.  ZZ  /\  d  e.  ZZ  /\  a  <  d )  /\  ( ph  /\  a  e.  H )  /\  [_ a  /  x ]_ C  <  [_ d  /  x ]_ C )  ->  d  e.  ( ZZ>= `  a )
)
73 simp2r 987 . . . . . . . . . . . . . 14  |-  ( ( ( a  e.  ZZ  /\  d  e.  ZZ  /\  a  <  d )  /\  ( ph  /\  a  e.  H )  /\  [_ a  /  x ]_ C  <  [_ d  /  x ]_ C )  ->  a  e.  H )
7473, 4syl6eleq 2343 . . . . . . . . . . . . 13  |-  ( ( ( a  e.  ZZ  /\  d  e.  ZZ  /\  a  <  d )  /\  ( ph  /\  a  e.  H )  /\  [_ a  /  x ]_ C  <  [_ d  /  x ]_ C )  ->  a  e.  ( ZZ>= `  I )
)
75 uztrn 10123 . . . . . . . . . . . . 13  |-  ( ( d  e.  ( ZZ>= `  a )  /\  a  e.  ( ZZ>= `  I )
)  ->  d  e.  ( ZZ>= `  I )
)
7672, 74, 75syl2anc 645 . . . . . . . . . . . 12  |-  ( ( ( a  e.  ZZ  /\  d  e.  ZZ  /\  a  <  d )  /\  ( ph  /\  a  e.  H )  /\  [_ a  /  x ]_ C  <  [_ d  /  x ]_ C )  ->  d  e.  ( ZZ>= `  I )
)
7776, 4syl6eleqr 2344 . . . . . . . . . . 11  |-  ( ( ( a  e.  ZZ  /\  d  e.  ZZ  /\  a  <  d )  /\  ( ph  /\  a  e.  H )  /\  [_ a  /  x ]_ C  <  [_ d  /  x ]_ C )  ->  d  e.  H )
78 nfv 1629 . . . . . . . . . . . . 13  |-  F/ x
( ph  /\  d  e.  H )
79 nfcsb1v 3041 . . . . . . . . . . . . . 14  |-  F/_ x [_ d  /  x ]_ C
8079nfel1 2395 . . . . . . . . . . . . 13  |-  F/ x [_ d  /  x ]_ C  e.  RR
8178, 80nfim 1735 . . . . . . . . . . . 12  |-  F/ x
( ( ph  /\  d  e.  H )  ->  [_ d  /  x ]_ C  e.  RR )
82 eleq1 2313 . . . . . . . . . . . . . 14  |-  ( x  =  d  ->  (
x  e.  H  <->  d  e.  H ) )
8382anbi2d 687 . . . . . . . . . . . . 13  |-  ( x  =  d  ->  (
( ph  /\  x  e.  H )  <->  ( ph  /\  d  e.  H ) ) )
84 csbeq1a 3017 . . . . . . . . . . . . . 14  |-  ( x  =  d  ->  C  =  [_ d  /  x ]_ C )
8584eleq1d 2319 . . . . . . . . . . . . 13  |-  ( x  =  d  ->  ( C  e.  RR  <->  [_ d  /  x ]_ C  e.  RR ) )
8683, 85imbi12d 313 . . . . . . . . . . . 12  |-  ( x  =  d  ->  (
( ( ph  /\  x  e.  H )  ->  C  e.  RR )  <-> 
( ( ph  /\  d  e.  H )  ->  [_ d  /  x ]_ C  e.  RR ) ) )
8781, 86, 18chvar 1878 . . . . . . . . . . 11  |-  ( (
ph  /\  d  e.  H )  ->  [_ d  /  x ]_ C  e.  RR )
8860, 77, 87syl2anc 645 . . . . . . . . . 10  |-  ( ( ( a  e.  ZZ  /\  d  e.  ZZ  /\  a  <  d )  /\  ( ph  /\  a  e.  H )  /\  [_ a  /  x ]_ C  <  [_ d  /  x ]_ C )  ->  [_ d  /  x ]_ C  e.  RR )
89 peano2uz 10151 . . . . . . . . . . . . 13  |-  ( d  e.  ( ZZ>= `  I
)  ->  ( d  +  1 )  e.  ( ZZ>= `  I )
)
9076, 89syl 17 . . . . . . . . . . . 12  |-  ( ( ( a  e.  ZZ  /\  d  e.  ZZ  /\  a  <  d )  /\  ( ph  /\  a  e.  H )  /\  [_ a  /  x ]_ C  <  [_ d  /  x ]_ C )  ->  (
d  +  1 )  e.  ( ZZ>= `  I
) )
9190, 4syl6eleqr 2344 . . . . . . . . . . 11  |-  ( ( ( a  e.  ZZ  /\  d  e.  ZZ  /\  a  <  d )  /\  ( ph  /\  a  e.  H )  /\  [_ a  /  x ]_ C  <  [_ d  /  x ]_ C )  ->  (
d  +  1 )  e.  H )
92 nfv 1629 . . . . . . . . . . . . 13  |-  F/ x
( ph  /\  (
d  +  1 )  e.  H )
93 nfcsb1v 3041 . . . . . . . . . . . . . 14  |-  F/_ x [_ ( d  +  1 )  /  x ]_ C
9493nfel1 2395 . . . . . . . . . . . . 13  |-  F/ x [_ ( d  +  1 )  /  x ]_ C  e.  RR
9592, 94nfim 1735 . . . . . . . . . . . 12  |-  F/ x
( ( ph  /\  ( d  +  1 )  e.  H )  ->  [_ ( d  +  1 )  /  x ]_ C  e.  RR )
96 ovex 5735 . . . . . . . . . . . 12  |-  ( d  +  1 )  e. 
_V
97 eleq1 2313 . . . . . . . . . . . . . 14  |-  ( x  =  ( d  +  1 )  ->  (
x  e.  H  <->  ( d  +  1 )  e.  H ) )
9897anbi2d 687 . . . . . . . . . . . . 13  |-  ( x  =  ( d  +  1 )  ->  (
( ph  /\  x  e.  H )  <->  ( ph  /\  ( d  +  1 )  e.  H ) ) )
99 csbeq1a 3017 . . . . . . . . . . . . . 14  |-  ( x  =  ( d  +  1 )  ->  C  =  [_ ( d  +  1 )  /  x ]_ C )
10099eleq1d 2319 . . . . . . . . . . . . 13  |-  ( x  =  ( d  +  1 )  ->  ( C  e.  RR  <->  [_ ( d  +  1 )  /  x ]_ C  e.  RR ) )
10198, 100imbi12d 313 . . . . . . . . . . . 12  |-  ( x  =  ( d  +  1 )  ->  (
( ( ph  /\  x  e.  H )  ->  C  e.  RR )  <-> 
( ( ph  /\  ( d  +  1 )  e.  H )  ->  [_ ( d  +  1 )  /  x ]_ C  e.  RR ) ) )
10295, 96, 101, 18vtoclf 2775 . . . . . . . . . . 11  |-  ( (
ph  /\  ( d  +  1 )  e.  H )  ->  [_ (
d  +  1 )  /  x ]_ C  e.  RR )
10360, 91, 102syl2anc 645 . . . . . . . . . 10  |-  ( ( ( a  e.  ZZ  /\  d  e.  ZZ  /\  a  <  d )  /\  ( ph  /\  a  e.  H )  /\  [_ a  /  x ]_ C  <  [_ d  /  x ]_ C )  ->  [_ (
d  +  1 )  /  x ]_ C  e.  RR )
104 simp3 962 . . . . . . . . . 10  |-  ( ( ( a  e.  ZZ  /\  d  e.  ZZ  /\  a  <  d )  /\  ( ph  /\  a  e.  H )  /\  [_ a  /  x ]_ C  <  [_ d  /  x ]_ C )  ->  [_ a  /  x ]_ C  <  [_ d  /  x ]_ C )
105 nfv 1629 . . . . . . . . . . . 12  |-  F/ y ( ( ph  /\  d  e.  H )  ->  [_ d  /  x ]_ C  <  [_ (
d  +  1 )  /  x ]_ C
)
106 eleq1 2313 . . . . . . . . . . . . . 14  |-  ( y  =  d  ->  (
y  e.  H  <->  d  e.  H ) )
107106anbi2d 687 . . . . . . . . . . . . 13  |-  ( y  =  d  ->  (
( ph  /\  y  e.  H )  <->  ( ph  /\  d  e.  H ) ) )
108 csbeq1 3012 . . . . . . . . . . . . . . 15  |-  ( y  =  d  ->  [_ y  /  x ]_ C  = 
[_ d  /  x ]_ C )
10945, 108syl5eqr 2299 . . . . . . . . . . . . . 14  |-  ( y  =  d  ->  F  =  [_ d  /  x ]_ C )
110 oveq1 5717 . . . . . . . . . . . . . . . 16  |-  ( y  =  d  ->  (
y  +  1 )  =  ( d  +  1 ) )
111110csbeq1d 3015 . . . . . . . . . . . . . . 15  |-  ( y  =  d  ->  [_ (
y  +  1 )  /  x ]_ C  =  [_ ( d  +  1 )  /  x ]_ C )
11251, 111syl5eqr 2299 . . . . . . . . . . . . . 14  |-  ( y  =  d  ->  G  =  [_ ( d  +  1 )  /  x ]_ C )
113109, 112breq12d 3933 . . . . . . . . . . . . 13  |-  ( y  =  d  ->  ( F  <  G  <->  [_ d  /  x ]_ C  <  [_ (
d  +  1 )  /  x ]_ C
) )
114107, 113imbi12d 313 . . . . . . . . . . . 12  |-  ( y  =  d  ->  (
( ( ph  /\  y  e.  H )  ->  F  <  G )  <-> 
( ( ph  /\  d  e.  H )  ->  [_ d  /  x ]_ C  <  [_ (
d  +  1 )  /  x ]_ C
) ) )
115105, 114, 57chvar 1878 . . . . . . . . . . 11  |-  ( (
ph  /\  d  e.  H )  ->  [_ d  /  x ]_ C  <  [_ ( d  +  1 )  /  x ]_ C )
11660, 77, 115syl2anc 645 . . . . . . . . . 10  |-  ( ( ( a  e.  ZZ  /\  d  e.  ZZ  /\  a  <  d )  /\  ( ph  /\  a  e.  H )  /\  [_ a  /  x ]_ C  <  [_ d  /  x ]_ C )  ->  [_ d  /  x ]_ C  <  [_ ( d  +  1 )  /  x ]_ C )
11759, 88, 103, 104, 116lttrd 8857 . . . . . . . . 9  |-  ( ( ( a  e.  ZZ  /\  d  e.  ZZ  /\  a  <  d )  /\  ( ph  /\  a  e.  H )  /\  [_ a  /  x ]_ C  <  [_ d  /  x ]_ C )  ->  [_ a  /  x ]_ C  <  [_ ( d  +  1 )  /  x ]_ C )
1181173exp 1155 . . . . . . . 8  |-  ( ( a  e.  ZZ  /\  d  e.  ZZ  /\  a  <  d )  ->  (
( ph  /\  a  e.  H )  ->  ( [_ a  /  x ]_ C  <  [_ d  /  x ]_ C  ->  [_ a  /  x ]_ C  <  [_ (
d  +  1 )  /  x ]_ C
) ) )
119118a2d 25 . . . . . . 7  |-  ( ( a  e.  ZZ  /\  d  e.  ZZ  /\  a  <  d )  ->  (
( ( ph  /\  a  e.  H )  ->  [_ a  /  x ]_ C  <  [_ d  /  x ]_ C )  ->  ( ( ph  /\  a  e.  H )  ->  [_ a  /  x ]_ C  <  [_ (
d  +  1 )  /  x ]_ C
) ) )
12030, 33, 36, 39, 58, 119uzind2 9983 . . . . . 6  |-  ( ( a  e.  ZZ  /\  b  e.  ZZ  /\  a  <  b )  ->  (
( ph  /\  a  e.  H )  ->  [_ a  /  x ]_ C  <  [_ b  /  x ]_ C ) )
12124, 26, 27, 120syl3anc 1187 . . . . 5  |-  ( ( ( ph  /\  (
a  e.  H  /\  b  e.  H )
)  /\  a  <  b )  ->  ( ( ph  /\  a  e.  H
)  ->  [_ a  /  x ]_ C  <  [_ b  /  x ]_ C ) )
12221, 121mpd 16 . . . 4  |-  ( ( ( ph  /\  (
a  e.  H  /\  b  e.  H )
)  /\  a  <  b )  ->  [_ a  /  x ]_ C  <  [_ b  /  x ]_ C )
123122ex 425 . . 3  |-  ( (
ph  /\  ( a  e.  H  /\  b  e.  H ) )  -> 
( a  <  b  ->  [_ a  /  x ]_ C  <  [_ b  /  x ]_ C ) )
1241, 2, 3, 8, 19, 123ltord1 9179 . 2  |-  ( (
ph  /\  ( A  e.  H  /\  B  e.  H ) )  -> 
( A  <  B  <->  [_ A  /  x ]_ C  <  [_ B  /  x ]_ C ) )
125 nfcvd 2386 . . . . 5  |-  ( A  e.  H  ->  F/_ x D )
126 monotuz.6 . . . . 5  |-  ( x  =  A  ->  C  =  D )
127125, 126csbiegf 3049 . . . 4  |-  ( A  e.  H  ->  [_ A  /  x ]_ C  =  D )
128 nfcvd 2386 . . . . 5  |-  ( B  e.  H  ->  F/_ x E )
129 monotuz.7 . . . . 5  |-  ( x  =  B  ->  C  =  E )
130128, 129csbiegf 3049 . . . 4  |-  ( B  e.  H  ->  [_ B  /  x ]_ C  =  E )
131127, 130breqan12d 3935 . . 3  |-  ( ( A  e.  H  /\  B  e.  H )  ->  ( [_ A  /  x ]_ C  <  [_ B  /  x ]_ C  <->  D  <  E ) )
132131adantl 454 . 2  |-  ( (
ph  /\  ( A  e.  H  /\  B  e.  H ) )  -> 
( [_ A  /  x ]_ C  <  [_ B  /  x ]_ C  <->  D  <  E ) )
133124, 132bitrd 246 1  |-  ( (
ph  /\  ( A  e.  H  /\  B  e.  H ) )  -> 
( A  <  B  <->  D  <  E ) )
Colors of variables: wff set class
Syntax hints:    -> wi 6    <-> wb 178    /\ wa 360    /\ w3a 939    = wceq 1619    e. wcel 1621   [_csb 3009   class class class wbr 3920   ` cfv 4592  (class class class)co 5710   RRcr 8616   1c1 8618    + caddc 8620    < clt 8747    <_ cle 8748   ZZcz 9903   ZZ>=cuz 10109
This theorem is referenced by:  ltrmynn0  26201  ltrmxnn0  26202
This theorem was proved from axioms:  ax-1 7  ax-2 8  ax-3 9  ax-mp 10  ax-5 1533  ax-6 1534  ax-7 1535  ax-gen 1536  ax-8 1623  ax-11 1624  ax-13 1625  ax-14 1626  ax-17 1628  ax-12o 1664  ax-10 1678  ax-9 1684  ax-4 1692  ax-16 1926  ax-ext 2234  ax-sep 4038  ax-nul 4046  ax-pow 4082  ax-pr 4108  ax-un 4403  ax-cnex 8673  ax-resscn 8674  ax-1cn 8675  ax-icn 8676  ax-addcl 8677  ax-addrcl 8678  ax-mulcl 8679  ax-mulrcl 8680  ax-mulcom 8681  ax-addass 8682  ax-mulass 8683  ax-distr 8684  ax-i2m1 8685  ax-1ne0 8686  ax-1rid 8687  ax-rnegex 8688  ax-rrecex 8689  ax-cnre 8690  ax-pre-lttri 8691  ax-pre-lttrn 8692  ax-pre-ltadd 8693  ax-pre-mulgt0 8694
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3or 940  df-3an 941  df-tru 1315  df-ex 1538  df-nf 1540  df-sb 1883  df-eu 2118  df-mo 2119  df-clab 2240  df-cleq 2246  df-clel 2249  df-nfc 2374  df-ne 2414  df-nel 2415  df-ral 2513  df-rex 2514  df-reu 2515  df-rab 2516  df-v 2729  df-sbc 2922  df-csb 3010  df-dif 3081  df-un 3083  df-in 3085  df-ss 3089  df-pss 3091  df-nul 3363  df-if 3471  df-pw 3532  df-sn 3550  df-pr 3551  df-tp 3552  df-op 3553  df-uni 3728  df-iun 3805  df-br 3921  df-opab 3975  df-mpt 3976  df-tr 4011  df-eprel 4198  df-id 4202  df-po 4207  df-so 4208  df-fr 4245  df-we 4247  df-ord 4288  df-on 4289  df-lim 4290  df-suc 4291  df-om 4548  df-xp 4594  df-rel 4595  df-cnv 4596  df-co 4597  df-dm 4598  df-rn 4599  df-res 4600  df-ima 4601  df-fun 4602  df-fn 4603  df-f 4604  df-f1 4605  df-fo 4606  df-f1o 4607  df-fv 4608  df-ov 5713  df-oprab 5714  df-mpt2 5715  df-iota 6143  df-riota 6190  df-recs 6274  df-rdg 6309  df-er 6546  df-en 6750  df-dom 6751  df-sdom 6752  df-pnf 8749  df-mnf 8750  df-xr 8751  df-ltxr 8752  df-le 8753  df-sub 8919  df-neg 8920  df-n 9627  df-n0 9845  df-z 9904  df-uz 10110
  Copyright terms: Public domain W3C validator