HomeHome Metamath Proof Explorer
Theorem List (p. 42 of 314)
< Previous  Next >
Browser slow? Try the
Unicode version.

Mirrors  >  Metamath Home Page  >  MPE Home Page  >  Theorem List Contents  >  Recent Proofs       This page: Page List

Color key:    Metamath Proof Explorer  Metamath Proof Explorer
(1-21444)
  Hilbert Space Explorer  Hilbert Space Explorer
(21445-22967)
  Users' Mathboxes  Users' Mathboxes
(22968-31305)
 

Theorem List for Metamath Proof Explorer - 4101-4200   *Has distinct variable group(s)
TypeLabelDescription
Statement
 
Axiomax-sep 4101* The Axiom of Separation of ZF set theory. See axsep 4100 for more information. It was derived as axsep 4100 above and is therefore redundant, but we state it as a separate axiom here so that its uses can be identified more easily. (Contributed by NM, 11-Sep-2006.)
 |- 
 E. y A. x ( x  e.  y  <->  ( x  e.  z  /\  ph ) )
 
Theoremaxsep2 4102* A less restrictive version of the Separation Scheme axsep 4100, where variables  x and  z can both appear free in the wff  ph, which can therefore be thought of as  ph ( x ,  z ). This version was derived from the more restrictive ax-sep 4101 with no additional set theory axioms. (Contributed by NM, 10-Dec-2006.) (Proof shortened by Mario Carneiro, 17-Nov-2016.)
 |- 
 E. y A. x ( x  e.  y  <->  ( x  e.  z  /\  ph ) )
 
Theoremzfauscl 4103* Separation Scheme (Aussonderung) using a class variable. To derive this from ax-sep 4101, we invoke the Axiom of Extensionality (indirectly via vtocl 2806), which is needed for the justification of class variable notation.

If we omit the requirement that  y not occur in  ph, we can derive a contradiction, as notzfaus 4143 shows. (Contributed by NM, 5-Aug-1993.)

 |-  A  e.  _V   =>    |-  E. y A. x ( x  e.  y  <->  ( x  e.  A  /\  ph )
 )
 
Theorembm1.3ii 4104* Convert implication to equivalence using the Separation Scheme (Aussonderung) ax-sep 4101. Similar to Theorem 1.3ii of [BellMachover] p. 463. (Contributed by NM, 5-Aug-1993.)
 |- 
 E. x A. y
 ( ph  ->  y  e.  x )   =>    |- 
 E. x A. y
 ( y  e.  x  <->  ph )
 
Theoremax9vsep 4105* Derive a weakened version of ax-9 1684 ( i.e. ax-9v 1632), where  x and  y must be distinct, from Separation ax-sep 4101 and Extensionality ax-ext 2237. See ax9 1683 for the derivation of ax-9 1684 from ax-9v 1632. (Contributed by NM, 12-Nov-2013.) (Proof modification is discouraged.) (New usage is discouraged.)
 |- 
 -.  A. x  -.  x  =  y
 
2.2.3  Derive the Null Set Axiom
 
Theoremzfnuleu 4106* Show the uniqueness of the empty set (using the Axiom of Extensionality via bm1.1 2241 to strengthen the hypothesis in the form of axnul 4108). (Contributed by NM, 22-Dec-2007.)
 |- 
 E. x A. y  -.  y  e.  x   =>    |-  E! x A. y  -.  y  e.  x
 
TheoremaxnulALT 4107* Prove axnul 4108 directly from ax-rep 4091 without using any equality axioms (ax-9 1684 thru ax-16 1927) if we accept ax-4 1692 as an axiom. (Contributed by Jeff Hoffman, 3-Feb-2008.) (Proof shortened by Mario Carneiro, 17-Nov-2016.) (Proof modification is discouraged.)
 |- 
 E. x A. y  -.  y  e.  x
 
Theoremaxnul 4108* The Null Set Axiom of ZF set theory: there exists a set with no elements. Axiom of Empty Set of [Enderton] p. 18. In some textbooks, this is presented as a separate axiom; here we show it can be derived from Separation ax-sep 4101. This version of the Null Set Axiom tells us that at least one empty set exists, but does not tells us that it is unique - we need the Axiom of Extensionality to do that (see zfnuleu 4106).

This proof, suggested by Jeff Hoffman (3-Feb-2008), uses only ax-5 1533 and ax-gen 1536 from predicate calculus, which are valid in "free logic" i.e. logic holding in an empty domain (see Axiom A5 and Rule R2 of [LeBlanc] p. 277). Thus our ax-sep 4101 implies the existence of at least one set. Note that Kunen's version of ax-sep 4101 (Axiom 3 of [Kunen] p. 11) does not imply the existence of a set because his is universally closed i.e. prefixed with universal quantifiers to eliminate all free variables. His existence is provided by a separate axiom stating  E. x x  =  x (Axiom 0 of [Kunen] p. 10).

See axnulALT 4107 for a proof directly from ax-rep 4091.

This theorem should not be referenced by any proof. Instead, use ax-nul 4109 below so that the uses of the Null Set Axiom can be more easily identified. (Contributed by NM, 7-Aug-2003.) (Revised by NM, 4-Feb-2008.) (New usage is discouraged.)

 |- 
 E. x A. y  -.  y  e.  x
 
Axiomax-nul 4109* The Null Set Axiom of ZF set theory. It was derived as axnul 4108 above and is therefore redundant, but we state it as a separate axiom here so that its uses can be identified more easily. (Contributed by NM, 7-Aug-2003.)
 |- 
 E. x A. y  -.  y  e.  x
 
Theorem0ex 4110 The Null Set Axiom of ZF set theory: the empty set exists. Corollary 5.16 of [TakeutiZaring] p. 20. For the unabbreviated version, see ax-nul 4109. (Contributed by NM, 5-Aug-1993.) (Proof shortened by Andrew Salmon, 9-Jul-2011.)
 |-  (/)  e.  _V
 
2.2.4  Theorems requiring subset and intersection existence
 
Theoremnalset 4111* No set contains all sets. Theorem 41 of [Suppes] p. 30. (Contributed by NM, 23-Aug-1993.)
 |- 
 -.  E. x A. y  y  e.  x
 
Theoremvprc 4112 The universal class is not a member of itself (and thus is not a set). Proposition 5.21 of [TakeutiZaring] p. 21; our proof, however, does not depend on the Axiom of Regularity. (Contributed by NM, 23-Aug-1993.)
 |- 
 -.  _V  e.  _V
 
Theoremnvel 4113 The universal class doesn't belong to any class. (Contributed by FL, 31-Dec-2006.)
 |- 
 -.  _V  e.  A
 
Theoremvnex 4114 The universal class does not exist. (Contributed by NM, 4-Jul-2005.)
 |- 
 -.  E. x  x  =  _V
 
Theoreminex1 4115 Separation Scheme (Aussonderung) using class notation. Compare Exercise 4 of [TakeutiZaring] p. 22. (Contributed by NM, 5-Aug-1993.)
 |-  A  e.  _V   =>    |-  ( A  i^i  B )  e.  _V
 
Theoreminex2 4116 Separation Scheme (Aussonderung) using class notation. (Contributed by NM, 27-Apr-1994.)
 |-  A  e.  _V   =>    |-  ( B  i^i  A )  e.  _V
 
Theoreminex1g 4117 Closed-form, generalized Separation Scheme. (Contributed by NM, 7-Apr-1995.)
 |-  ( A  e.  V  ->  ( A  i^i  B )  e.  _V )
 
Theoremssex 4118 The subset of a set is also a set. Exercise 3 of [TakeutiZaring] p. 22. This is one way to express the Axiom of Separation ax-sep 4101 (a.k.a. Subset Axiom). (Contributed by NM, 27-Apr-1994.)
 |-  B  e.  _V   =>    |-  ( A  C_  B  ->  A  e.  _V )
 
Theoremssexi 4119 The subset of a set is also a set. (Contributed by NM, 9-Sep-1993.)
 |-  B  e.  _V   &    |-  A  C_  B   =>    |-  A  e.  _V
 
Theoremssexg 4120 The subset of a set is also a set. Exercise 3 of [TakeutiZaring] p. 22 (generalized). (Contributed by NM, 14-Aug-1994.)
 |-  ( ( A  C_  B  /\  B  e.  C )  ->  A  e.  _V )
 
Theoremssexd 4121 A subclass of a set is a set. Deduction form of ssexg 4120. (Contributed by David Moews, 1-May-2017.)
 |-  ( ph  ->  B  e.  C )   &    |-  ( ph  ->  A 
 C_  B )   =>    |-  ( ph  ->  A  e.  _V )
 
Theoremdifexg 4122 Existence of a difference. (Contributed by NM, 26-May-1998.)
 |-  ( A  e.  V  ->  ( A  \  B )  e.  _V )
 
Theoremzfausab 4123* Separation Scheme (Aussonderung) in terms of a class abstraction. (Contributed by NM, 8-Jun-1994.)
 |-  A  e.  _V   =>    |-  { x  |  ( x  e.  A  /\  ph ) }  e.  _V
 
Theoremrabexg 4124* Separation Scheme in terms of a restricted class abstraction. (Contributed by NM, 23-Oct-1999.)
 |-  ( A  e.  V  ->  { x  e.  A  |  ph }  e.  _V )
 
Theoremrabex 4125* Separation Scheme in terms of a restricted class abstraction. (Contributed by NM, 19-Jul-1996.)
 |-  A  e.  _V   =>    |-  { x  e.  A  |  ph }  e.  _V
 
Theoremelssabg 4126* Membership in a class abstraction involving a subset. Unlike elabg 2883,  A does not have to be a set. (Contributed by NM, 29-Aug-2006.)
 |-  ( x  =  A  ->  ( ph  <->  ps ) )   =>    |-  ( B  e.  V  ->  ( A  e.  { x  |  ( x 
 C_  B  /\  ph ) } 
 <->  ( A  C_  B  /\  ps ) ) )
 
Theoremelpw2g 4127 Membership in a power class. Theorem 86 of [Suppes] p. 47. (Contributed by NM, 7-Aug-2000.)
 |-  ( B  e.  V  ->  ( A  e.  ~P B 
 <->  A  C_  B )
 )
 
Theoremelpw2 4128 Membership in a power class. Theorem 86 of [Suppes] p. 47. (Contributed by NM, 11-Oct-2007.)
 |-  B  e.  _V   =>    |-  ( A  e.  ~P B  <->  A  C_  B )
 
Theoremintex 4129 The intersection of a non-empty class exists. Exercise 5 of [TakeutiZaring] p. 44 and its converse. (Contributed by NM, 13-Aug-2002.)
 |-  ( A  =/=  (/)  <->  |^| A  e.  _V )
 
Theoremintnex 4130 If a class intersection is not a set, it must be the universe. (Contributed by NM, 3-Jul-2005.)
 |-  ( -.  |^| A  e.  _V  <->  |^| A  =  _V )
 
Theoremintexab 4131 The intersection of a non-empty class abstraction exists. (Contributed by NM, 21-Oct-2003.)
 |-  ( E. x ph  <->  |^| { x  |  ph }  e.  _V )
 
Theoremintexrab 4132 The intersection of a non-empty restricted class abstraction exists. (Contributed by NM, 21-Oct-2003.)
 |-  ( E. x  e.  A  ph  <->  |^| { x  e.  A  |  ph }  e.  _V )
 
Theoremiinexg 4133* The existence of an indexed union. 
x is normally a free-variable parameter in  B, which should be read  B ( x ). (Contributed by FL, 19-Sep-2011.)
 |-  ( ( A  =/=  (/)  /\  A. x  e.  A  B  e.  C )  -> 
 |^|_ x  e.  A  B  e.  _V )
 
Theoremintabs 4134* Absorption of a redundant conjunct in the intersection of a class abstraction. (Contributed by NM, 3-Jul-2005.)
 |-  ( x  =  y 
 ->  ( ph  <->  ps ) )   &    |-  ( x  =  |^| { y  |  ps }  ->  ( ph 
 <->  ch ) )   &    |-  ( |^| { y  |  ps } 
 C_  A  /\  ch )   =>    |- 
 |^| { x  |  ( x  C_  A  /\  ph ) }  =  |^| { x  |  ph }
 
Theoreminuni 4135* The intersection of a union  U. A with a class  B is equal to the union of the intersections of each element of  A with  B. (Contributed by FL, 24-Mar-2007.)
 |-  ( U. A  i^i  B )  =  U. { x  |  E. y  e.  A  x  =  ( y  i^i  B ) }
 
2.2.5  Theorems requiring empty set existence
 
Theoremclass2set 4136* Construct, from any class  A, a set equal to it when the class exists and equal to the empty set when the class is proper. This theorem shows that the constructed set always exists. (Contributed by NM, 16-Oct-2003.)
 |- 
 { x  e.  A  |  A  e.  _V }  e.  _V
 
Theoremclass2seteq 4137* Equality theorem based on class2set 4136. (Contributed by NM, 13-Dec-2005.) (Proof shortened by Raph Levien, 30-Jun-2006.)
 |-  ( A  e.  V  ->  { x  e.  A  |  A  e.  _V }  =  A )
 
Theorem0elpw 4138 Every power class contains the empty set. (Contributed by NM, 25-Oct-2007.)
 |-  (/)  e.  ~P A
 
Theorem0nep0 4139 The empty set and its power set are not equal. (Contributed by NM, 23-Dec-1993.)
 |-  (/)  =/=  { (/) }
 
Theorem0inp0 4140 Something cannot be equal to both the null set and the power set of the null set. (Contributed by NM, 30-Sep-2003.)
 |-  ( A  =  (/)  ->  -.  A  =  { (/) } )
 
Theoremunidif0 4141 The removal of the empty set from a class does not affect its union. (Contributed by NM, 22-Mar-2004.)
 |- 
 U. ( A  \  { (/) } )  = 
 U. A
 
Theoremiin0 4142* An indexed intersection of the empty set, with a non-empty index set, is empty. (Contributed by NM, 20-Oct-2005.)
 |-  ( A  =/=  (/)  <->  |^|_ x  e.  A  (/) 
 =  (/) )
 
Theoremnotzfaus 4143* In the Separation Scheme zfauscl 4103, we require that  y not occur in  ph (which can be generalized to "not be free in"). Here we show special cases of  A and  ph that result in a contradiction by violating this requirement. (Contributed by NM, 8-Feb-2006.)
 |-  A  =  { (/) }   &    |-  ( ph 
 <->  -.  x  e.  y
 )   =>    |- 
 -.  E. y A. x ( x  e.  y  <->  ( x  e.  A  /\  ph ) )
 
Theoremintv 4144 The intersection of the universal class is empty. (Contributed by NM, 11-Sep-2008.)
 |- 
 |^| _V  =  (/)
 
Theoremaxpweq 4145* Two equivalent ways to express the Power Set Axiom. Note that ax-pow 4146 is not used by the proof. (Contributed by NM, 22-Jun-2009.)
 |-  A  e.  _V   =>    |-  ( ~P A  e.  _V  <->  E. x A. y
 ( A. z ( z  e.  y  ->  z  e.  A )  ->  y  e.  x ) )
 
2.3  ZF Set Theory - add the Axiom of Power Sets
 
2.3.1  Introduce the Axiom of Power Sets
 
Axiomax-pow 4146* Axiom of Power Sets. An axiom of Zermelo-Fraenkel set theory. It states that a set  y exists that includes the power set of a given set  x i.e. contains every subset of  x. The variant axpow2 4148 uses explicit subset notation. A version using class notation is pwex 4151. (Contributed by NM, 5-Aug-1993.)
 |- 
 E. y A. z
 ( A. w ( w  e.  z  ->  w  e.  x )  ->  z  e.  y )
 
Theoremzfpow 4147* Axiom of Power Sets expressed with fewest number of different variables. (Contributed by NM, 14-Aug-2003.)
 |- 
 E. x A. y
 ( A. x ( x  e.  y  ->  x  e.  z )  ->  y  e.  x )
 
Theoremaxpow2 4148* A variant of the Axiom of Power Sets ax-pow 4146 using subset notation. Problem in {BellMachover] p. 466. (Contributed by NM, 4-Jun-2006.)
 |- 
 E. y A. z
 ( z  C_  x  ->  z  e.  y )
 
Theoremaxpow3 4149* A variant of the Axiom of Power Sets ax-pow 4146. For any set  x, there exists a set  y whose members are exactly the subsets of  x i.e. the power set of  x. Axiom Pow of [BellMachover] p. 466. (Contributed by NM, 4-Jun-2006.)
 |- 
 E. y A. z
 ( z  C_  x  <->  z  e.  y )
 
Theoremel 4150* Every set is an element of some other set. See elALT 4176 for a shorter proof using more axioms. (Contributed by NM, 4-Jan-2002.) (Proof shortened by Andrew Salmon, 25-Jul-2011.)
 |- 
 E. y  x  e.  y
 
Theorempwex 4151 Power set axiom expressed in class notation. Axiom 4 of [TakeutiZaring] p. 17. (Contributed by NM, 5-Aug-1993.) (Proof shortened by Andrew Salmon, 25-Jul-2011.)
 |-  A  e.  _V   =>    |-  ~P A  e.  _V
 
Theorempwexg 4152 Power set axiom expressed in class notation, with the sethood requirement as an antecedent. Axiom 4 of [TakeutiZaring] p. 17. (Contributed by NM, 30-Oct-2003.)
 |-  ( A  e.  V  ->  ~P A  e.  _V )
 
Theoremabssexg 4153* Existence of a class of subsets. (Contributed by NM, 15-Jul-2006.) (Proof shortened by Andrew Salmon, 25-Jul-2011.)
 |-  ( A  e.  V  ->  { x  |  ( x  C_  A  /\  ph ) }  e.  _V )
 
TheoremsnexALT 4154 A singleton is a set. Theorem 7.13 of [Quine] p. 51, but proved using only Extensionality, Power Set, and Separation. Unlike the proof of zfpair 4170, Replacement is not needed. (Contributed by NM, 7-Aug-1994.) (Proof shortened by Andrew Salmon, 25-Jul-2011.) See also snex 4174. (Proof modification is discouraged.) (New usage is discouraged.)
 |- 
 { A }  e.  _V
 
Theoremp0ex 4155 The power set of the empty set (the ordinal 1) is a set. (Contributed by NM, 23-Dec-1993.)
 |- 
 { (/) }  e.  _V
 
Theoremp0exALT 4156 The power set of the empty set (the ordinal 1) is a set. Alternate proof. (Contributed by NM, 23-Dec-1993.) (Proof modification is discouraged.) (New usage is discouraged.)
 |- 
 { (/) }  e.  _V
 
Theorempp0ex 4157 The power set of the power set of the empty set (the ordinal 2) is a set. (Contributed by NM, 5-Aug-1993.)
 |- 
 { (/) ,  { (/) } }  e.  _V
 
Theoremord3ex 4158 The ordinal number 3 is a set, proved without the Axiom of Union ax-un 4470. (Contributed by NM, 2-May-2009.)
 |- 
 { (/) ,  { (/) } ,  { (/) ,  { (/) } } }  e.  _V
 
Theoremdtru 4159* At least two sets exist (or in terms of first-order logic, the universe of discourse has two or more objects). Note that we may not substitute the same variable for both  x and  y (as indicated by the distinct variable requirement), for otherwise we would contradict stdpc6 1821.

This theorem is proved directly from set theory axioms (no set theory definitions) and does not use ax-ext 2237 or ax-sep 4101. See dtruALT 4165 for a shorter proof using these axioms.

The proof makes use of dummy variables  z and  w which do not appear in the final theorem. They must be distinct from each other and from  x and  y. In other words, if we were to substitute  x for  z throughout the proof, the proof would fail. Although this requirement is made explicitly in the set.mm source file, it is implicit on the web page (i.e. doesn't appear in the "Distinct variable group"). (Contributed by NM, 7-Nov-2006.)

 |- 
 -.  A. x  x  =  y
 
Theoremax16b 4160* This theorem shows that axiom ax-16 1927 is redundant in the presence of theorem dtru 4159, which states simply that at least two things exist. This justifies the remark at http://us.metamath.org/mpegif/mmzfcnd.html#twoness (which links to this theorem). (Contributed by NM, 7-Nov-2006.)
 |-  ( A. x  x  =  y  ->  ( ph  ->  A. x ph )
 )
 
Theoremeunex 4161 Existential uniqueness implies there is a value for which the wff argument is false. (Contributed by NM, 24-Oct-2010.)
 |-  ( E! x ph  ->  E. x  -.  ph )
 
Theoremnfnid 4162 A set variable is not free from itself. The proof relies on dtru 4159, that is, it is not true in a one-element domain. (Contributed by Mario Carneiro, 8-Oct-2016.)
 |- 
 -.  F/_ x x
 
Theoremnfcvb 4163* The "distinctor" expression  -.  A. x x  =  y, stating that  x and  y are not the same variable, can be written in terms of  F/ in the obvious way. This theorem is not true in a one-element domain, because then  F/_ x y and  A. x x  =  y will both be true. (Contributed by Mario Carneiro, 8-Oct-2016.)
 |-  ( F/_ x y  <->  -.  A. x  x  =  y )
 
Theorempwuni 4164 A class is a subclass of the power class of its union. Exercise 6(b) of [Enderton] p. 38. (Contributed by NM, 14-Oct-1996.)
 |-  A  C_  ~P U. A
 
TheoremdtruALT 4165* A version of dtru 4159 ("two things exist") with a shorter proof that uses more axioms but may be easier to understand.

Assuming that ZF set theory is consistent, we cannot prove this theorem unless we specify that  x and  y be distinct. Specifically, theorem cla4ev 2843 requires that  x must not occur in the subexpression  -.  y  =  { (/) } in step 4 nor in the subexpression  -.  y  =  (/) in step 9. The proof verifier will require that  x and  y be in a distinct variable group to ensure this. You can check this by deleting the $d statement in set.mm and rerunning the verifier, which will print a detailed explanation of the distinct variable violation. (Contributed by NM, 15-Jul-1994.) (Proof modification is discouraged.)

 |- 
 -.  A. x  x  =  y
 
Theoremdtrucor 4166* Corollary of dtru 4159. This example illustrates the danger of blindly trusting the standard Deduction Theorem without accounting for free variables: the theorem form of this deduction is not valid, as shown by dtrucor2 4167. (Contributed by NM, 27-Jun-2002.)
 |-  x  =  y   =>    |-  x  =/=  y
 
Theoremdtrucor2 4167 The theorem form of the deduction dtrucor 4166 leads to a contradiction, as mentioned in the "Wrong!" example at http://us.metamath.org/mpegif/mmdeduction.html#bad. (Contributed by NM, 20-Oct-2007.)
 |-  ( x  =  y 
 ->  x  =/=  y
 )   =>    |-  ( ph  /\  -.  ph )
 
Theoremdvdemo1 4168* Demonstration of a theorem (scheme) that requires (meta)variables  x and  y to be distinct, but no others. It bundles the theorem schemes  E. x ( x  =  y  ->  x  e.  x ) and  E. x ( x  =  y  ->  y  e.  x ). Compare dvdemo2 4169. ("Bundles" is a term introduced by Raph Levien.) (Contributed by NM, 1-Dec-2006.)
 |- 
 E. x ( x  =  y  ->  z  e.  x )
 
Theoremdvdemo2 4169* Demonstration of a theorem (scheme) that requires (meta)variables  x and  z to be distinct, but no others. It bundles the theorem schemes  E. x ( x  =  x  -> 
z  e.  x ) and 
E. x ( x  =  y  ->  y  e.  x ). Compare dvdemo1 4168. (Contributed by NM, 1-Dec-2006.)
 |- 
 E. x ( x  =  y  ->  z  e.  x )
 
2.3.2  Derive the Axiom of Pairing
 
Theoremzfpair 4170 The Axiom of Pairing of Zermelo-Fraenkel set theory. Axiom 2 of [TakeutiZaring] p. 15. In some textbooks this is stated as a separate axiom; here we show it is redundant since it can be derived from the other axioms.

This theorem should not be referenced by any proof other than axpr 4171. Instead, use zfpair2 4173 below so that the uses of the Axiom of Pairing can be more easily identified. (Contributed by NM, 18-Oct-1995.) (New usage is discouraged.)

 |- 
 { x ,  y }  e.  _V
 
Theoremaxpr 4171* Unabbreviated version of the Axiom of Pairing of ZF set theory, derived as a theorem from the other axioms.

This theorem should not be referenced by any proof. Instead, use ax-pr 4172 below so that the uses of the Axiom of Pairing can be more easily identified. (Contributed by NM, 14-Nov-2006.) (New usage is discouraged.)

 |- 
 E. z A. w ( ( w  =  x  \/  w  =  y )  ->  w  e.  z )
 
Axiomax-pr 4172* The Axiom of Pairing of ZF set theory. It was derived as theorem axpr 4171 above and is therefore redundant, but we state it as a separate axiom here so that its uses can be identified more easily. (Contributed by NM, 14-Nov-2006.)
 |- 
 E. z A. w ( ( w  =  x  \/  w  =  y )  ->  w  e.  z )
 
Theoremzfpair2 4173 Derive the abbreviated version of the Axiom of Pairing from ax-pr 4172. See zfpair 4170 for its derivation from the other axioms. (Contributed by NM, 14-Nov-2006.)
 |- 
 { x ,  y }  e.  _V
 
Theoremsnex 4174 A singleton is a set. Theorem 7.13 of [Quine] p. 51, proved using Extensionality, Separation, and Pairing. See also snexALT 4154. (Contributed by NM, 7-Aug-1994.) (Revised by Mario Carneiro, 19-May-2013.) (Proof modification is discouraged.)
 |- 
 { A }  e.  _V
 
Theoremprex 4175 The Axiom of Pairing using class variables. Theorem 7.13 of [Quine] p. 51. By virtue of its definition, an unordered pair remains a set (even though no longer a pair) even when its components are proper classes (see prprc 3698), so we can dispense with hypotheses requiring them to be sets. (Contributed by NM, 5-Aug-1993.)
 |- 
 { A ,  B }  e.  _V
 
TheoremelALT 4176* Every set is an element of some other set. This has a shorter proof than el 4150 but uses more axioms. (Contributed by NM, 4-Jan-2002.) (Proof modification is discouraged.)
 |- 
 E. y  x  e.  y
 
TheoremdtruALT2 4177* An alternative proof of dtru 4159 ("two things exist") using ax-pr 4172 instead of ax-pow 4146. (Contributed by Mario Carneiro, 31-Aug-2015.) (Proof modification is discouraged.)
 |- 
 -.  A. x  x  =  y
 
Theoremsnelpwi 4178 A singleton of a set belongs to the power class of a class containing the set. (Contributed by Alan Sare, 25-Aug-2011.)
 |-  ( A  e.  B  ->  { A }  e.  ~P B )
 
Theoremsnelpw 4179 A singleton of a set belongs to the power class of a class containing the set. (Contributed by NM, 1-Apr-1998.)
 |-  A  e.  _V   =>    |-  ( A  e.  B 
 <->  { A }  e.  ~P B )
 
Theoremrext 4180* A theorem similar to extensionality, requiring the existence of a singleton. Exercise 8 of [TakeutiZaring] p. 16. (Contributed by NM, 10-Aug-1993.)
 |-  ( A. z ( x  e.  z  ->  y  e.  z )  ->  x  =  y )
 
Theoremsspwb 4181 Classes are subclasses if and only if their power classes are subclasses. Exercise 18 of [TakeutiZaring] p. 18. (Contributed by NM, 13-Oct-1996.)
 |-  ( A  C_  B  <->  ~P A  C_  ~P B )
 
Theoremunipw 4182 A class equals the union of its power class. Exercise 6(a) of [Enderton] p. 38. (Contributed by NM, 14-Oct-1996.) (Proof shortened by Alan Sare, 28-Dec-2008.)
 |- 
 U. ~P A  =  A
 
Theorempwel 4183 Membership of a power class. Exercise 10 of [Enderton] p. 26. (Contributed by NM, 13-Jan-2007.)
 |-  ( A  e.  B  ->  ~P A  e.  ~P ~P U. B )
 
Theorempwtr 4184 A class is transitive iff its power class is transitive. (Contributed by Alan Sare, 25-Aug-2011.) (Revised by Mario Carneiro, 15-Jun-2014.)
 |-  ( Tr  A  <->  Tr  ~P A )
 
Theoremssextss 4185* An extensionality-like principle defining subclass in terms of subsets. (Contributed by NM, 30-Jun-2004.)
 |-  ( A  C_  B  <->  A. x ( x  C_  A  ->  x  C_  B ) )
 
Theoremssext 4186* An extensionality-like principle that uses the subset instead of the membership relation: two classes are equal iff they have the same subsets. (Contributed by NM, 30-Jun-2004.)
 |-  ( A  =  B  <->  A. x ( x  C_  A 
 <->  x  C_  B )
 )
 
Theoremnssss 4187* Negation of subclass relationship. Compare nss 3197. (Contributed by NM, 30-Jun-2004.) (Proof shortened by Andrew Salmon, 25-Jul-2011.)
 |-  ( -.  A  C_  B 
 <-> 
 E. x ( x 
 C_  A  /\  -.  x  C_  B ) )
 
Theorempweqb 4188 Classes are equal if and only if their power classes are equal. Exercise 19 of [TakeutiZaring] p. 18. (Contributed by NM, 13-Oct-1996.)
 |-  ( A  =  B  <->  ~P A  =  ~P B )
 
Theoremintid 4189* The intersection of all sets to which a set belongs is the singleton of that set. (Contributed by NM, 5-Jun-2009.)
 |-  A  e.  _V   =>    |-  |^| { x  |  A  e.  x }  =  { A }
 
Theoremmoabex 4190 "At most one" existence implies a class abstraction exists. (Contributed by NM, 30-Dec-1996.)
 |-  ( E* x ph  ->  { x  |  ph }  e.  _V )
 
Theoremrmorabex 4191 Restricted "at most one" existence implies a restricted class abstraction exists. (Contributed by NM, 17-Jun-2017.)
 |-  ( E* x  e.  A ph  ->  { x  e.  A  |  ph }  e.  _V )
 
Theoremeuabex 4192 The abstraction of a wff with existential uniqueness exists. (Contributed by NM, 25-Nov-1994.)
 |-  ( E! x ph  ->  { x  |  ph }  e.  _V )
 
Theoremnnullss 4193* A non-empty class (even if proper) has a non-empty subset. (Contributed by NM, 23-Aug-2003.)
 |-  ( A  =/=  (/)  ->  E. x ( x  C_  A  /\  x  =/=  (/) ) )
 
Theoremexss 4194* Restricted existence in a class (even if proper) implies restricted existence in a subset. (Contributed by NM, 23-Aug-2003.)
 |-  ( E. x  e.  A  ph  ->  E. y
 ( y  C_  A  /\  E. x  e.  y  ph ) )
 
Theoremopex 4195 An ordered pair of classes is a set. Exercise 7 of [TakeutiZaring] p. 16. (Contributed by NM, 18-Aug-1993.) (Revised by Mario Carneiro, 26-Apr-2015.)
 |- 
 <. A ,  B >.  e. 
 _V
 
Theoremotex 4196 An ordered triple of classes is a set. (Contributed by NM, 3-Apr-2015.)
 |- 
 <. A ,  B ,  C >.  e.  _V
 
Theoremelop 4197 An ordered pair has two elements. Exercise 3 of [TakeutiZaring] p. 15. (Contributed by NM, 5-Aug-1993.) (Revised by Mario Carneiro, 26-Apr-2015.)
 |-  A  e.  _V   &    |-  B  e.  _V   &    |-  C  e.  _V   =>    |-  ( A  e.  <. B ,  C >. 
 <->  ( A  =  { B }  \/  A  =  { B ,  C } ) )
 
Theoremopi1 4198 One of the two elements in an ordered pair. (Contributed by NM, 5-Aug-1993.) (Revised by Mario Carneiro, 26-Apr-2015.)
 |-  A  e.  _V   &    |-  B  e.  _V   =>    |- 
 { A }  e.  <. A ,  B >.
 
Theoremopi2 4199 One of the two elements of an ordered pair. (Contributed by NM, 5-Aug-1993.) (Revised by Mario Carneiro, 26-Apr-2015.)
 |-  A  e.  _V   &    |-  B  e.  _V   =>    |- 
 { A ,  B }  e.  <. A ,  B >.
 
2.3.3  Ordered pair theorem
 
Theoremopnz 4200 An ordered pair is nonempty iff the arguments are sets. (Contributed by NM, 24-Jan-2004.) (Revised by Mario Carneiro, 26-Apr-2015.)
 |-  ( <. A ,  B >.  =/=  (/)  <->  ( A  e.  _V 
 /\  B  e.  _V ) )
    < Previous  Next >

Page List
Jump to page: Contents  1 1-100 2 101-200 3 201-300 4 301-400 5 401-500 6 501-600 7 601-700 8 701-800 9 801-900 10 901-1000 11 1001-1100 12 1101-1200 13 1201-1300 14 1301-1400 15 1401-1500 16 1501-1600 17 1601-1700 18 1701-1800 19 1801-1900 20 1901-2000 21 2001-2100 22 2101-2200 23 2201-2300 24 2301-2400 25 2401-2500 26 2501-2600 27 2601-2700 28 2701-2800 29 2801-2900 30 2901-3000 31 3001-3100 32 3101-3200 33 3201-3300 34 3301-3400 35 3401-3500 36 3501-3600 37 3601-3700 38 3701-3800 39 3801-3900 40 3901-4000 41 4001-4100 42 4101-4200 43 4201-4300 44 4301-4400 45 4401-4500 46 4501-4600 47 4601-4700 48 4701-4800 49 4801-4900 50 4901-5000 51 5001-5100 52 5101-5200 53 5201-5300 54 5301-5400 55 5401-5500 56 5501-5600 57 5601-5700 58 5701-5800 59 5801-5900 60 5901-6000 61 6001-6100 62 6101-6200 63 6201-6300 64 6301-6400 65 6401-6500 66 6501-6600 67 6601-6700 68 6701-6800 69 6801-6900 70 6901-7000 71 7001-7100 72 7101-7200 73 7201-7300 74 7301-7400 75 7401-7500 76 7501-7600 77 7601-7700 78 7701-7800 79 7801-7900 80 7901-8000 81 8001-8100 82 8101-8200 83 8201-8300 84 8301-8400 85 8401-8500 86 8501-8600 87 8601-8700 88 8701-8800 89 8801-8900 90 8901-9000 91 9001-9100 92 9101-9200 93 9201-9300 94 9301-9400 95 9401-9500 96 9501-9600 97 9601-9700 98 9701-9800 99 9801-9900 100 9901-10000 101 10001-10100 102 10101-10200 103 10201-10300 104 10301-10400 105 10401-10500 106 10501-10600 107 10601-10700 108 10701-10800 109 10801-10900 110 10901-11000 111 11001-11100 112 11101-11200 113 11201-11300 114 11301-11400 115 11401-11500 116 11501-11600 117 11601-11700 118 11701-11800 119 11801-11900 120 11901-12000 121 12001-12100 122 12101-12200 123 12201-12300 124 12301-12400 125 12401-12500 126 12501-12600 127 12601-12700 128 12701-12800 129 12801-12900 130 12901-13000 131 13001-13100 132 13101-13200 133 13201-13300 134 13301-13400 135 13401-13500 136 13501-13600 137 13601-13700 138 13701-13800 139 13801-13900 140 13901-14000 141 14001-14100 142 14101-14200 143 14201-14300 144 14301-14400 145 14401-14500 146 14501-14600 147 14601-14700 148 14701-14800 149 14801-14900 150 14901-15000 151 15001-15100 152 15101-15200 153 15201-15300 154 15301-15400 155 15401-15500 156 15501-15600 157 15601-15700 158 15701-15800 159 15801-15900 160 15901-16000 161 16001-16100 162 16101-16200 163 16201-16300 164 16301-16400 165 16401-16500 166 16501-16600 167 16601-16700 168 16701-16800 169 16801-16900 170 16901-17000 171 17001-17100 172 17101-17200 173 17201-17300 174 17301-17400 175 17401-17500 176 17501-17600 177 17601-17700 178 17701-17800 179 17801-17900 180 17901-18000 181 18001-18100 182 18101-18200 183 18201-18300 184 18301-18400 185 18401-18500 186 18501-18600 187 18601-18700 188 18701-18800 189 18801-18900 190 18901-19000 191 19001-19100 192 19101-19200 193 19201-19300 194 19301-19400 195 19401-19500 196 19501-19600 197 19601-19700 198 19701-19800 199 19801-19900 200 19901-20000 201 20001-20100 202 20101-20200 203 20201-20300 204 20301-20400 205 20401-20500 206 20501-20600 207 20601-20700 208 20701-20800 209 20801-20900 210 20901-21000 211 21001-21100 212 21101-21200 213 21201-21300 214 21301-21400 215 21401-21500 216 21501-21600 217 21601-21700 218 21701-21800 219 21801-21900 220 21901-22000 221 22001-22100 222 22101-22200 223 22201-22300 224 22301-22400 225 22401-22500 226 22501-22600 227 22601-22700 228 22701-22800 229 22801-22900 230 22901-23000 231 23001-23100 232 23101-23200 233 23201-23300 234 23301-23400 235 23401-23500 236 23501-23600 237 23601-23700 238 23701-23800 239 23801-23900 240 23901-24000 241 24001-24100 242 24101-24200 243 24201-24300 244 24301-24400 245 24401-24500 246 24501-24600 247 24601-24700 248 24701-24800 249 24801-24900 250 24901-25000 251 25001-25100 252 25101-25200 253 25201-25300 254 25301-25400 255 25401-25500 256 25501-25600 257 25601-25700 258 25701-25800 259 25801-25900 260 25901-26000 261 26001-26100 262 26101-26200 263 26201-26300 264 26301-26400 265 26401-26500 266 26501-26600 267 26601-26700 268 26701-26800 269 26801-26900 270 26901-27000 271 27001-27100 272 27101-27200 273 27201-27300 274 27301-27400 275 27401-27500 276 27501-27600 277 27601-27700 278 27701-27800 279 27801-27900 280 27901-28000 281 28001-28100 282 28101-28200 283 28201-28300 284 28301-28400 285 28401-28500 286 28501-28600 287 28601-28700 288 28701-28800 289 28801-28900 290 28901-29000 291 29001-29100 292 29101-29200 293 29201-29300 294 29301-29400 295 29401-29500 296 29501-29600 297 29601-29700 298 29701-29800 299 29801-29900 300 29901-30000 301 30001-30100 302 30101-30200 303 30201-30300 304 30301-30400 305 30401-30500 306 30501-30600 307 30601-30700 308 30701-30800 309 30801-30900 310 30901-31000 311 31001-31100 312 31101-31200 313 31201-31300 314 31301-31305
  Copyright terms: Public domain < Previous  Next >