HomeHome Metamath Proof Explorer
Theorem List (p. 31 of 309)
< Previous  Next >
Browser slow? Try the
Unicode version.

Mirrors  >  Metamath Home Page  >  MPE Home Page  >  Theorem List Contents  >  Recent Proofs       This page: Page List

Color key:    Metamath Proof Explorer  Metamath Proof Explorer
(1-21328)
  Hilbert Space Explorer  Hilbert Space Explorer
(21329-22851)
  Users' Mathboxes  Users' Mathboxes
(22852-30843)
 

Theorem List for Metamath Proof Explorer - 3001-3100   *Has distinct variable group(s)
TypeLabelDescription
Statement
 
Theoremra4esbca 3001* Existence form of ra4sbca 3000. (Contributed by NM, 29-Feb-2008.) (Proof shortened by Mario Carneiro, 13-Oct-2016.)
 |-  ( ( A  e.  B  /\  [. A  /  x ].
 ph )  ->  E. x  e.  B  ph )
 
Theorema4esbc 3002 Existence form of a4sbc 2933. (Contributed by Mario Carneiro, 18-Nov-2016.)
 |-  ( [. A  /  x ]. ph  ->  E. x ph )
 
Theorema4esbcd 3003 form of a4sbc 2933. (Contributed by Mario Carneiro, 9-Feb-2017.)
 |-  ( ph  ->  [. A  /  x ]. ps )   =>    |-  ( ph  ->  E. x ps )
 
Theoremsbcth2 3004* A substitution into a theorem. (Contributed by NM, 1-Mar-2008.) (Proof shortened by Mario Carneiro, 13-Oct-2016.)
 |-  ( x  e.  B  -> 
 ph )   =>    |-  ( A  e.  B  -> 
 [. A  /  x ].
 ph )
 
Theoremra5 3005 Restricted quantifier version of Axiom 5 of [Mendelson] p. 69. This is an axiom of a predicate calculus for a restricted domain. Compare the unrestricted stdpc5 1773. (Contributed by NM, 16-Jan-2004.)
 |- 
 F/ x ph   =>    |-  ( A. x  e.  A  ( ph  ->  ps )  ->  ( ph  ->  A. x  e.  A  ps ) )
 
Theoremrmo3 3006* Restricted "at most one" using explicit substitution. (Contributed by NM, 4-Nov-2012.)
 |- 
 F/ y ph   =>    |-  ( E* x ( x  e.  A  /\  ph )  <->  A. x  e.  A  A. y  e.  A  ( ( ph  /\  [
 y  /  x ] ph )  ->  x  =  y ) )
 
Theoremrmob 3007* Consequence of "at most one", using implicit substitution. (Contributed by NM, 2-Jan-2015.)
 |-  ( x  =  B  ->  ( ph  <->  ps ) )   &    |-  ( x  =  C  ->  (
 ph 
 <->  ch ) )   =>    |-  ( ( E* x ( x  e.  A  /\  ph )  /\  ( B  e.  A  /\  ps ) )  ->  ( B  =  C  <->  ( C  e.  A  /\  ch ) ) )
 
Theoremrmoi 3008* Consequence of "at most one", using implicit substitution. (Contributed by NM, 4-Nov-2012.)
 |-  ( x  =  B  ->  ( ph  <->  ps ) )   &    |-  ( x  =  C  ->  (
 ph 
 <->  ch ) )   =>    |-  ( ( E* x ( x  e.  A  /\  ph )  /\  ( B  e.  A  /\  ps )  /\  ( C  e.  A  /\  ch ) )  ->  B  =  C )
 
2.1.10  Proper substitution of classes for sets into classes
 
Syntaxcsb 3009 Extend class notation to include the proper substitution of a class for a set into another class.
 class  [_ A  /  x ]_ B
 
Definitiondf-csb 3010* Define the proper substitution of a class for a set into another class. The underlined brackets distinguish it from the substitution into a wff, wsbc 2921, to prevent ambiguity. Theorem sbcel1g 3028 shows an example of how ambiguity could arise if we didn't use distinguished brackets. Theorem sbccsbg 3037 recreates substitution into a wff from this definition. (Contributed by NM, 10-Nov-2005.)
 |-  [_ A  /  x ]_ B  =  { y  |  [. A  /  x ]. y  e.  B }
 
Theoremcsb2 3011* Alternate expression for the proper substitution into a class, without referencing substitution into a wff. Note that  x can be free in  B but cannot occur in  A. (Contributed by NM, 2-Dec-2013.)
 |-  [_ A  /  x ]_ B  =  { y  |  E. x ( x  =  A  /\  y  e.  B ) }
 
Theoremcsbeq1 3012 Analog of dfsbcq 2923 for proper substitution into a class. (Contributed by NM, 10-Nov-2005.)
 |-  ( A  =  B  -> 
 [_ A  /  x ]_ C  =  [_ B  /  x ]_ C )
 
Theoremcbvcsb 3013 Change bound variables in a class substitution. Interestingly, this does not require any bound variable conditions on  A. (Contributed by Jeff Hankins, 13-Sep-2009.) (Revised by Mario Carneiro, 11-Dec-2016.)
 |-  F/_ y C   &    |-  F/_ x D   &    |-  ( x  =  y  ->  C  =  D )   =>    |-  [_ A  /  x ]_ C  =  [_ A  /  y ]_ D
 
Theoremcbvcsbv 3014* Change the bound variable of a proper substitution into a class using implicit substitution. (Contributed by NM, 30-Sep-2008.) (Revised by Mario Carneiro, 13-Oct-2016.)
 |-  ( x  =  y 
 ->  B  =  C )   =>    |-  [_ A  /  x ]_ B  =  [_ A  /  y ]_ C
 
Theoremcsbeq1d 3015 Equality deduction for proper substitution into a class. (Contributed by NM, 3-Dec-2005.)
 |-  ( ph  ->  A  =  B )   =>    |-  ( ph  ->  [_ A  /  x ]_ C  =  [_ B  /  x ]_ C )
 
Theoremcsbid 3016 Analog of sbid 1895 for proper substitution into a class. (Contributed by NM, 10-Nov-2005.)
 |-  [_ x  /  x ]_ A  =  A
 
Theoremcsbeq1a 3017 Equality theorem for proper substitution into a class. (Contributed by NM, 10-Nov-2005.)
 |-  ( x  =  A  ->  B  =  [_ A  /  x ]_ B )
 
Theoremcsbco 3018* Composition law for chained substitutions into a class. (Contributed by NM, 10-Nov-2005.)
 |-  [_ A  /  y ]_ [_ y  /  x ]_ B  =  [_ A  /  x ]_ B
 
Theoremcsbexg 3019 The existence of proper substitution into a class. (Contributed by NM, 10-Nov-2005.)
 |-  ( ( A  e.  V  /\  A. x  B  e.  W )  ->  [_ A  /  x ]_ B  e.  _V )
 
Theoremcsbex 3020 The existence of proper substitution into a class. (Contributed by NM, 7-Aug-2007.) (Proof shortened by Andrew Salmon, 29-Jun-2011.)
 |-  A  e.  _V   &    |-  B  e.  _V   =>    |-  [_ A  /  x ]_ B  e.  _V
 
Theoremcsbtt 3021 Substitution doesn't affect a constant  B (in which  x is not free). (Contributed by Mario Carneiro, 14-Oct-2016.)
 |-  ( ( A  e.  V  /\  F/_ x B ) 
 ->  [_ A  /  x ]_ B  =  B )
 
Theoremcsbconstgf 3022 Substitution doesn't affect a constant  B (in which  x is not free). (Contributed by NM, 10-Nov-2005.)
 |-  F/_ x B   =>    |-  ( A  e.  V  -> 
 [_ A  /  x ]_ B  =  B )
 
Theoremcsbconstg 3023* Substitution doesn't affect a constant  B (in which  x is not free). csbconstgf 3022 with distinct variable requirement. (Contributed by Alan Sare, 22-Jul-2012.)
 |-  ( A  e.  V  -> 
 [_ A  /  x ]_ B  =  B )
 
Theoremsbcel12g 3024 Distribute proper substitution through a membership relation. (Contributed by NM, 10-Nov-2005.) (Proof shortened by Andrew Salmon, 29-Jun-2011.)
 |-  ( A  e.  V  ->  ( [. A  /  x ]. B  e.  C  <->  [_ A  /  x ]_ B  e.  [_ A  /  x ]_ C ) )
 
Theoremsbceqg 3025 Distribute proper substitution through an equality relation. (Contributed by NM, 10-Nov-2005.) (Proof shortened by Andrew Salmon, 29-Jun-2011.)
 |-  ( A  e.  V  ->  ( [. A  /  x ]. B  =  C  <->  [_ A  /  x ]_ B  =  [_ A  /  x ]_ C ) )
 
Theoremsbcnel12g 3026 Distribute proper substitution through negated membership. (Contributed by Andrew Salmon, 18-Jun-2011.)
 |-  ( A  e.  V  ->  ( [. A  /  x ]. B  e/  C  <->  [_ A  /  x ]_ B  e/  [_ A  /  x ]_ C ) )
 
Theoremsbcne12g 3027 Distribute proper substitution through an inequality. (Contributed by Andrew Salmon, 18-Jun-2011.)
 |-  ( A  e.  V  ->  ( [. A  /  x ]. B  =/=  C  <->  [_ A  /  x ]_ B  =/=  [_ A  /  x ]_ C ) )
 
Theoremsbcel1g 3028* Move proper substitution in and out of a membership relation. Note that the scope of  [. A  /  x ]. is the wff  B  e.  C, whereas the scope of  [_ A  /  x ]_ is the class  B. (Contributed by NM, 10-Nov-2005.)
 |-  ( A  e.  V  ->  ( [. A  /  x ]. B  e.  C  <->  [_ A  /  x ]_ B  e.  C )
 )
 
Theoremsbceq1g 3029* Move proper substitution to first argument of an equality. (Contributed by NM, 30-Nov-2005.)
 |-  ( A  e.  V  ->  ( [. A  /  x ]. B  =  C  <->  [_ A  /  x ]_ B  =  C )
 )
 
Theoremsbcel2g 3030* Move proper substitution in and out of a membership relation. (Contributed by NM, 14-Nov-2005.)
 |-  ( A  e.  V  ->  ( [. A  /  x ]. B  e.  C  <->  B  e.  [_ A  /  x ]_ C ) )
 
Theoremsbceq2g 3031* Move proper substitution to second argument of an equality. (Contributed by NM, 30-Nov-2005.)
 |-  ( A  e.  V  ->  ( [. A  /  x ]. B  =  C  <->  B  =  [_ A  /  x ]_ C ) )
 
Theoremcsbcomg 3032* Commutative law for double substitution into a class. (Contributed by NM, 14-Nov-2005.)
 |-  ( ( A  e.  V  /\  B  e.  W )  ->  [_ A  /  x ]_
 [_ B  /  y ]_ C  =  [_ B  /  y ]_ [_ A  /  x ]_ C )
 
Theoremcsbeq2d 3033 Formula-building deduction rule for class substitution. (Contributed by NM, 22-Nov-2005.) (Revised by Mario Carneiro, 1-Sep-2015.)
 |- 
 F/ x ph   &    |-  ( ph  ->  B  =  C )   =>    |-  ( ph  ->  [_ A  /  x ]_ B  =  [_ A  /  x ]_ C )
 
Theoremcsbeq2dv 3034* Formula-building deduction rule for class substitution. (Contributed by NM, 10-Nov-2005.) (Revised by Mario Carneiro, 1-Sep-2015.)
 |-  ( ph  ->  B  =  C )   =>    |-  ( ph  ->  [_ A  /  x ]_ B  =  [_ A  /  x ]_ C )
 
Theoremcsbeq2i 3035 Formula-building inference rule for class substitution. (Contributed by NM, 10-Nov-2005.) (Revised by Mario Carneiro, 1-Sep-2015.)
 |-  B  =  C   =>    |-  [_ A  /  x ]_ B  =  [_ A  /  x ]_ C
 
Theoremcsbvarg 3036 The proper substitution of a class for set variable results in the class (if the class exists). (Contributed by NM, 10-Nov-2005.)
 |-  ( A  e.  V  -> 
 [_ A  /  x ]_ x  =  A )
 
Theoremsbccsbg 3037* Substitution into a wff expressed in terms of substitution into a class. (Contributed by NM, 15-Aug-2007.)
 |-  ( A  e.  V  ->  ( [. A  /  x ]. ph  <->  y  e.  [_ A  /  x ]_ { y  |  ph } ) )
 
Theoremsbccsb2g 3038 Substitution into a wff expressed in using substitution into a class. (Contributed by NM, 27-Nov-2005.)
 |-  ( A  e.  V  ->  ( [. A  /  x ]. ph  <->  A  e.  [_ A  /  x ]_ { x  |  ph } ) )
 
Theoremnfcsb1d 3039 Bound-variable hypothesis builder for substitution into a class. (Contributed by Mario Carneiro, 12-Oct-2016.)
 |-  ( ph  ->  F/_ x A )   =>    |-  ( ph  ->  F/_ x [_ A  /  x ]_ B )
 
Theoremnfcsb1 3040 Bound-variable hypothesis builder for substitution into a class. (Contributed by Mario Carneiro, 12-Oct-2016.)
 |-  F/_ x A   =>    |-  F/_ x [_ A  /  x ]_ B
 
Theoremnfcsb1v 3041* Bound-variable hypothesis builder for substitution into a class. (Contributed by NM, 17-Aug-2006.) (Revised by Mario Carneiro, 12-Oct-2016.)
 |-  F/_ x [_ A  /  x ]_ B
 
Theoremnfcsbd 3042 Deduction version of nfcsb 3043. (Contributed by NM, 21-Nov-2005.) (Revised by Mario Carneiro, 12-Oct-2016.)
 |- 
 F/ y ph   &    |-  ( ph  ->  F/_ x A )   &    |-  ( ph  ->  F/_ x B )   =>    |-  ( ph  ->  F/_ x [_ A  /  y ]_ B )
 
Theoremnfcsb 3043 Bound-variable hypothesis builder for substitution into a class. (Contributed by Mario Carneiro, 12-Oct-2016.)
 |-  F/_ x A   &    |-  F/_ x B   =>    |-  F/_ x [_ A  /  y ]_ B
 
Theoremcsbhypf 3044* Introduce an explicit substitution into an implicit substitution hypothesis. See sbhypf 2771 for class substitution version. (Contributed by NM, 19-Dec-2008.)
 |-  F/_ x A   &    |-  F/_ x C   &    |-  ( x  =  A  ->  B  =  C )   =>    |-  ( y  =  A  ->  [_ y  /  x ]_ B  =  C )
 
Theoremcsbiebt 3045* Conversion of implicit substitution to explicit substitution into a class. (Closed theorem version of csbiegf 3049.) (Contributed by NM, 11-Nov-2005.)
 |-  ( ( A  e.  V  /\  F/_ x C ) 
 ->  ( A. x ( x  =  A  ->  B  =  C )  <->  [_ A  /  x ]_ B  =  C ) )
 
Theoremcsbiedf 3046* Conversion of implicit substitution to explicit substitution into a class. (Contributed by Mario Carneiro, 13-Oct-2016.)
 |- 
 F/ x ph   &    |-  ( ph  ->  F/_ x C )   &    |-  ( ph  ->  A  e.  V )   &    |-  ( ( ph  /\  x  =  A )  ->  B  =  C )   =>    |-  ( ph  ->  [_ A  /  x ]_ B  =  C )
 
Theoremcsbieb 3047* Bidirectional conversion between an implicit class substitution hypothesis  x  =  A  ->  B  =  C and its explicit substitution equivalent. (Contributed by NM, 2-Mar-2008.)
 |-  A  e.  _V   &    |-  F/_ x C   =>    |-  ( A. x ( x  =  A  ->  B  =  C )  <->  [_ A  /  x ]_ B  =  C )
 
Theoremcsbiebg 3048* Bidirectional conversion between an implicit class substitution hypothesis  x  =  A  ->  B  =  C and its explicit substitution equivalent. (Contributed by NM, 24-Mar-2013.) (Revised by Mario Carneiro, 11-Dec-2016.)
 |-  F/_ x C   =>    |-  ( A  e.  V  ->  ( A. x ( x  =  A  ->  B  =  C )  <->  [_ A  /  x ]_ B  =  C ) )
 
Theoremcsbiegf 3049* Conversion of implicit substitution to explicit substitution into a class. (Contributed by NM, 11-Nov-2005.) (Revised by Mario Carneiro, 13-Oct-2016.)
 |-  ( A  e.  V  -> 
 F/_ x C )   &    |-  ( x  =  A  ->  B  =  C )   =>    |-  ( A  e.  V  -> 
 [_ A  /  x ]_ B  =  C )
 
Theoremcsbief 3050* Conversion of implicit substitution to explicit substitution into a class. (Contributed by NM, 26-Nov-2005.) (Revised by Mario Carneiro, 13-Oct-2016.)
 |-  A  e.  _V   &    |-  F/_ x C   &    |-  ( x  =  A  ->  B  =  C )   =>    |-  [_ A  /  x ]_ B  =  C
 
Theoremcsbied 3051* Conversion of implicit substitution to explicit substitution into a class. (Contributed by Mario Carneiro, 2-Dec-2014.) (Revised by Mario Carneiro, 13-Oct-2016.)
 |-  ( ph  ->  A  e.  V )   &    |-  ( ( ph  /\  x  =  A ) 
 ->  B  =  C )   =>    |-  ( ph  ->  [_ A  /  x ]_ B  =  C )
 
Theoremcsbied2 3052* Conversion of implicit substitution to explicit class substitution, deduction form. (Contributed by Mario Carneiro, 2-Jan-2017.)
 |-  ( ph  ->  A  e.  V )   &    |-  ( ph  ->  A  =  B )   &    |-  (
 ( ph  /\  x  =  B )  ->  C  =  D )   =>    |-  ( ph  ->  [_ A  /  x ]_ C  =  D )
 
Theoremcsbie2t 3053* Conversion of implicit substitution to explicit substitution into a class (closed form of csbie2 3054). (Contributed by NM, 3-Sep-2007.) (Revised by Mario Carneiro, 13-Oct-2016.)
 |-  A  e.  _V   &    |-  B  e.  _V   =>    |-  ( A. x A. y ( ( x  =  A  /\  y  =  B )  ->  C  =  D )  ->  [_ A  /  x ]_ [_ B  /  y ]_ C  =  D )
 
Theoremcsbie2 3054* Conversion of implicit substitution to explicit substitution into a class. (Contributed by NM, 27-Aug-2007.)
 |-  A  e.  _V   &    |-  B  e.  _V   &    |-  ( ( x  =  A  /\  y  =  B )  ->  C  =  D )   =>    |-  [_ A  /  x ]_
 [_ B  /  y ]_ C  =  D
 
Theoremcsbie2g 3055* Conversion of implicit substitution to explicit class substitution. This version of sbcie 2955 avoids a disjointness condition on  x ,  A by substituting twice. (Contributed by Mario Carneiro, 11-Nov-2016.)
 |-  ( x  =  y 
 ->  B  =  C )   &    |-  ( y  =  A  ->  C  =  D )   =>    |-  ( A  e.  V  -> 
 [_ A  /  x ]_ B  =  D )
 
Theoremsbcnestgf 3056 Nest the composition of two substitutions. (Contributed by Mario Carneiro, 11-Nov-2016.)
 |-  ( ( A  e.  V  /\  A. y F/ x ph )  ->  ( [. A  /  x ].
 [. B  /  y ]. ph  <->  [. [_ A  /  x ]_ B  /  y ]. ph ) )
 
Theoremcsbnestgf 3057 Nest the composition of two substitutions. (Contributed by NM, 23-Nov-2005.) (Proof shortened by Mario Carneiro, 10-Nov-2016.)
 |-  ( ( A  e.  V  /\  A. y F/_ x C )  ->  [_ A  /  x ]_ [_ B  /  y ]_ C  =  [_
 [_ A  /  x ]_ B  /  y ]_ C )
 
Theoremsbcnestg 3058* Nest the composition of two substitutions. (Contributed by NM, 27-Nov-2005.) (Proof shortened by Mario Carneiro, 11-Nov-2016.)
 |-  ( A  e.  V  ->  ( [. A  /  x ]. [. B  /  y ]. ph  <->  [. [_ A  /  x ]_ B  /  y ]. ph ) )
 
Theoremcsbnestg 3059* Nest the composition of two substitutions. (Contributed by NM, 23-Nov-2005.) (Proof shortened by Mario Carneiro, 10-Nov-2016.)
 |-  ( A  e.  V  -> 
 [_ A  /  x ]_
 [_ B  /  y ]_ C  =  [_ [_ A  /  x ]_ B  /  y ]_ C )
 
TheoremcsbnestgOLD 3060* Nest the composition of two substitutions. (New usage is discouraged.) (Contributed by NM, 23-Nov-2005.)
 |-  ( ( A  e.  V  /\  A. x  B  e.  W )  ->  [_ A  /  x ]_ [_ B  /  y ]_ C  =  [_
 [_ A  /  x ]_ B  /  y ]_ C )
 
Theoremcsbnest1g 3061 Nest the composition of two substitutions. (Contributed by NM, 23-May-2006.) (Proof shortened by Mario Carneiro, 11-Nov-2016.)
 |-  ( A  e.  V  -> 
 [_ A  /  x ]_
 [_ B  /  x ]_ C  =  [_ [_ A  /  x ]_ B  /  x ]_ C )
 
Theoremcsbnest1gOLD 3062* Nest the composition of two substitutions. Obsolete as of 11-Nov-2016. (Contributed by NM, 23-May-2006.) (New usage is discouraged.)
 |-  ( ( A  e.  V  /\  A. x  B  e.  W )  ->  [_ A  /  x ]_ [_ B  /  x ]_ C  =  [_
 [_ A  /  x ]_ B  /  x ]_ C )
 
Theoremcsbidmg 3063* Idempotent law for class substitutions. (Contributed by NM, 1-Mar-2008.)
 |-  ( A  e.  V  -> 
 [_ A  /  x ]_
 [_ A  /  x ]_ B  =  [_ A  /  x ]_ B )
 
Theoremsbcco3g 3064* Composition of two substitutions. (Contributed by NM, 27-Nov-2005.) (Revised by Mario Carneiro, 11-Nov-2016.)
 |-  ( x  =  A  ->  B  =  C )   =>    |-  ( A  e.  V  ->  ( [. A  /  x ]. [. B  /  y ]. ph  <->  [. C  /  y ]. ph ) )
 
Theoremsbcco3gOLD 3065* Composition of two substitutions. (Contributed by NM, 27-Nov-2005.) (New usage is discouraged.)
 |-  ( x  =  A  ->  B  =  C )   =>    |-  ( ( A  e.  V  /\  A. x  B  e.  W )  ->  ( [. A  /  x ].
 [. B  /  y ]. ph  <->  [. C  /  y ]. ph ) )
 
Theoremcsbco3g 3066* Composition of two class substitutions. (Contributed by NM, 27-Nov-2005.) (Revised by Mario Carneiro, 11-Nov-2016.)
 |-  ( x  =  A  ->  B  =  C )   =>    |-  ( A  e.  V  -> 
 [_ A  /  x ]_
 [_ B  /  y ]_ D  =  [_ C  /  y ]_ D )
 
Theoremcsbco3gOLD 3067* Composition of two class substitutions. Obsolete as of 11-Nov-2016. (Contributed by NM, 27-Nov-2005.) (New usage is discouraged.)
 |-  ( x  =  A  ->  B  =  D )   =>    |-  ( ( A  e.  V  /\  A. x  B  e.  W )  ->  [_ A  /  x ]_ [_ B  /  y ]_ C  =  [_ D  /  y ]_ C )
 
Theoremra4csbela 3068* Special case related to ra4sbc 2999. (Contributed by NM, 10-Dec-2005.) (Proof shortened by Eric Schmidt, 17-Jan-2007.)
 |-  ( ( A  e.  B  /\  A. x  e.  B  C  e.  D )  ->  [_ A  /  x ]_ C  e.  D )
 
Theoremsbnfc2 3069* Two ways of expressing " x is (effectively) not free in  A." (Contributed by Mario Carneiro, 14-Oct-2016.)
 |-  ( F/_ x A  <->  A. y A. z [_ y  /  x ]_ A  =  [_ z  /  x ]_ A )
 
Theoremcsbabg 3070* Move substitution into a class abstraction. (Contributed by NM, 13-Dec-2005.) (Proof shortened by Andrew Salmon, 9-Jul-2011.)
 |-  ( A  e.  V  -> 
 [_ A  /  x ]_
 { y  |  ph }  =  { y  | 
 [. A  /  x ].
 ph } )
 
Theoremcbvralcsf 3071 A more general version of cbvralf 2703 that doesn't require  A and  B to be distinct from  x or  y. Changes bound variables using implicit substitution. (Contributed by Andrew Salmon, 13-Jul-2011.)
 |-  F/_ y A   &    |-  F/_ x B   &    |-  F/ y ph   &    |-  F/ x ps   &    |-  ( x  =  y  ->  A  =  B )   &    |-  ( x  =  y  ->  (
 ph 
 <->  ps ) )   =>    |-  ( A. x  e.  A  ph  <->  A. y  e.  B  ps )
 
Theoremcbvrexcsf 3072 A more general version of cbvrexf 2704 that has no distinct variable restrictions. Changes bound variables using implicit substitution. (Contributed by Andrew Salmon, 13-Jul-2011.) (Proof shortened by Mario Carneiro, 7-Dec-2014.)
 |-  F/_ y A   &    |-  F/_ x B   &    |-  F/ y ph   &    |-  F/ x ps   &    |-  ( x  =  y  ->  A  =  B )   &    |-  ( x  =  y  ->  (
 ph 
 <->  ps ) )   =>    |-  ( E. x  e.  A  ph  <->  E. y  e.  B  ps )
 
Theoremcbvreucsf 3073 A more general version of cbvreuv 2710 that has no distinct variable rextrictions. Changes bound variables using implicit substitution. (Contributed by Andrew Salmon, 13-Jul-2011.)
 |-  F/_ y A   &    |-  F/_ x B   &    |-  F/ y ph   &    |-  F/ x ps   &    |-  ( x  =  y  ->  A  =  B )   &    |-  ( x  =  y  ->  (
 ph 
 <->  ps ) )   =>    |-  ( E! x  e.  A  ph  <->  E! y  e.  B  ps )
 
Theoremcbvrabcsf 3074 A more general version of cbvrab 2725 with no distinct variable restrictions. (Contributed by Andrew Salmon, 13-Jul-2011.)
 |-  F/_ y A   &    |-  F/_ x B   &    |-  F/ y ph   &    |-  F/ x ps   &    |-  ( x  =  y  ->  A  =  B )   &    |-  ( x  =  y  ->  (
 ph 
 <->  ps ) )   =>    |-  { x  e.  A  |  ph }  =  { y  e.  B  |  ps }
 
2.1.11  Define basic set operations and relations
 
Syntaxcdif 3075 Extend class notation to include class difference (read: " A minus  B").
 class  ( A  \  B )
 
Syntaxcun 3076 Extend class notation to include union of two classes (read: " A union  B").
 class  ( A  u.  B )
 
Syntaxcin 3077 Extend class notation to include the intersection of two classes (read: " A intersect  B").
 class  ( A  i^i  B )
 
Syntaxwss 3078 Extend wff notation to include the subclass relation. This is read " A is a subclass of  B " or " B includes  A." When  A exists as a set, it is also read " A is a subset of  B."
 wff  A  C_  B
 
Syntaxwpss 3079 Extend wff notation with proper subclass relation.
 wff  A  C.  B
 
Theoremdifjust 3080* Soundness justification theorem for df-dif 3081. (Contributed by Rodolfo Medina, 27-Apr-2010.) (Proof shortened by Andrew Salmon, 9-Jul-2011.)
 |- 
 { x  |  ( x  e.  A  /\  -.  x  e.  B ) }  =  { y  |  ( y  e.  A  /\  -.  y  e.  B ) }
 
Definitiondf-dif 3081* Define class difference, also called relative complement. Definition 5.12 of [TakeutiZaring] p. 20. For example,  ( { 1 ,  3 }  \  { 1 ,  8 } )  =  {
3 } (ex-dif 20623). Contrast this operation with union  ( A  u.  B
) (df-un 3083) and intersection  ( A  i^i  B ) (df-in 3085). Several notations are used in the literature; we chose the 
\ convention used in Definition 5.3 of [Eisenberg] p. 67 instead of the more common minus sign to reserve the latter for later use in, e.g., arithmetic. We will use the terminology " A excludes  B " to mean  A  \  B. We will use " B is removed from  A " to mean  A  \  { B } i.e. the removal of an element or equivalently the exclusion of a singleton. (Contributed by NM, 29-Apr-1994.)
 |-  ( A  \  B )  =  { x  |  ( x  e.  A  /\  -.  x  e.  B ) }
 
Theoremunjust 3082* Soundness justification theorem for df-un 3083. (Contributed by Rodolfo Medina, 28-Apr-2010.) (Proof shortened by Andrew Salmon, 9-Jul-2011.)
 |- 
 { x  |  ( x  e.  A  \/  x  e.  B ) }  =  { y  |  ( y  e.  A  \/  y  e.  B ) }
 
Definitiondf-un 3083* Define the union of two classes. Definition 5.6 of [TakeutiZaring] p. 16. For example,  ( { 1 ,  3 }  u.  {
1 ,  8 } )  =  { 1 ,  3 ,  8 } (ex-un 20624). Contrast this operation with difference  ( A  \  B ) (df-dif 3081) and intersection  ( A  i^i  B ) (df-in 3085). For an alternate definition in terms of class difference, requiring no dummy variables, see dfun2 3311. For union defined in terms of intersection, see dfun3 3314. (Contributed by NM, 23-Aug-1993.)
 |-  ( A  u.  B )  =  { x  |  ( x  e.  A  \/  x  e.  B ) }
 
Theoreminjust 3084* Soundness justification theorem for df-in 3085. (Contributed by Rodolfo Medina, 28-Apr-2010.) (Proof shortened by Andrew Salmon, 9-Jul-2011.)
 |- 
 { x  |  ( x  e.  A  /\  x  e.  B ) }  =  { y  |  ( y  e.  A  /\  y  e.  B ) }
 
Definitiondf-in 3085* Define the intersection of two classes. Definition 5.6 of [TakeutiZaring] p. 16. For example,  ( { 1 ,  3 }  i^i  { 1 ,  8 } )  =  { 1 } (ex-in 20625). Contrast this operation with union  ( A  u.  B
) (df-un 3083) and difference  ( A  \  B ) (df-dif 3081). For alternate definitions in terms of class difference, requiring no dummy variables, see dfin2 3312 and dfin4 3316. For intersection defined in terms of union, see dfin3 3315. (Contributed by NM, 29-Apr-1994.)
 |-  ( A  i^i  B )  =  { x  |  ( x  e.  A  /\  x  e.  B ) }
 
Theoremdfin5 3086* Alternate definition for the intersection of two classes. (Contributed by NM, 6-Jul-2005.)
 |-  ( A  i^i  B )  =  { x  e.  A  |  x  e.  B }
 
Theoremdfdif2 3087* Alternate definition of class difference. (Contributed by NM, 25-Mar-2004.)
 |-  ( A  \  B )  =  { x  e.  A  |  -.  x  e.  B }
 
Theoremeldif 3088 Expansion of membership in a class difference. (Contributed by NM, 29-Apr-1994.)
 |-  ( A  e.  ( B  \  C )  <->  ( A  e.  B  /\  -.  A  e.  C ) )
 
2.1.12  Subclasses and subsets
 
Definitiondf-ss 3089 Define the subclass relationship. Exercise 9 of [TakeutiZaring] p. 18. For example,  { 1 ,  2 }  C_  { 1 ,  2 ,  3 } (ex-ss 20627). Note that  A  C_  A (proved in ssid 3118). Contrast this relationship with the relationship  A  C.  B (as will be defined in df-pss 3091). For a more traditional definition, but requiring a dummy variable, see dfss2 3092. Other possible definitions are given by dfss3 3093, dfss4 3310, sspss 3195, ssequn1 3255, ssequn2 3258, sseqin2 3295, and ssdif0 3420. (Contributed by NM, 27-Apr-1994.)
 |-  ( A  C_  B  <->  ( A  i^i  B )  =  A )
 
Theoremdfss 3090 Variant of subclass definition df-ss 3089. (Contributed by NM, 3-Sep-2004.)
 |-  ( A  C_  B  <->  A  =  ( A  i^i  B ) )
 
Definitiondf-pss 3091 Define proper subclass relationship between two classes. Definition 5.9 of [TakeutiZaring] p. 17. For example,  { 1 ,  2 }  C.  {
1 ,  2 ,  3 } (ex-pss 20628). Note that  -.  A  C.  A (proved in pssirr 3196). Contrast this relationship with the relationship  A 
C_  B (as defined in df-ss 3089). Other possible definitions are given by dfpss2 3182 and dfpss3 3183. (Contributed by NM, 7-Feb-1996.)
 |-  ( A  C.  B  <->  ( A  C_  B  /\  A  =/=  B ) )
 
Theoremdfss2 3092* Alternate definition of the subclass relationship between two classes. Definition 5.9 of [TakeutiZaring] p. 17. (Contributed by NM, 8-Jan-2002.)
 |-  ( A  C_  B  <->  A. x ( x  e.  A  ->  x  e.  B ) )
 
Theoremdfss3 3093* Alternate definition of subclass relationship. (Contributed by NM, 14-Oct-1999.)
 |-  ( A  C_  B  <->  A. x  e.  A  x  e.  B )
 
Theoremdfss2f 3094 Equivalence for subclass relation, using bound-variable hypotheses instead of distinct variable conditions. (Contributed by NM, 3-Jul-1994.) (Revised by Andrew Salmon, 27-Aug-2011.)
 |-  F/_ x A   &    |-  F/_ x B   =>    |-  ( A  C_  B 
 <-> 
 A. x ( x  e.  A  ->  x  e.  B ) )
 
Theoremdfss3f 3095 Equivalence for subclass relation, using bound-variable hypotheses instead of distinct variable conditions. (Contributed by NM, 20-Mar-2004.)
 |-  F/_ x A   &    |-  F/_ x B   =>    |-  ( A  C_  B 
 <-> 
 A. x  e.  A  x  e.  B )
 
Theoremnfss 3096 If  x is not free in  A and  B, it is not free in  A  C_  B. (Contributed by NM, 27-Dec-1996.)
 |-  F/_ x A   &    |-  F/_ x B   =>    |-  F/ x  A  C_  B
 
Theoremssel 3097 Membership relationships follow from a subclass relationship. (Contributed by NM, 5-Aug-1993.)
 |-  ( A  C_  B  ->  ( C  e.  A  ->  C  e.  B ) )
 
Theoremssel2 3098 Membership relationships follow from a subclass relationship. (Contributed by NM, 7-Jun-2004.)
 |-  ( ( A  C_  B  /\  C  e.  A )  ->  C  e.  B )
 
Theoremsseli 3099 Membership inference from subclass relationship. (Contributed by NM, 5-Aug-1993.)
 |-  A  C_  B   =>    |-  ( C  e.  A  ->  C  e.  B )
 
Theoremsselii 3100 Membership inference from subclass relationship. (Contributed by NM, 31-May-1999.)
 |-  A  C_  B   &    |-  C  e.  A   =>    |-  C  e.  B
    < Previous  Next >

Page List
Jump to page: Contents  1 1-100 2 101-200 3 201-300 4 301-400 5 401-500 6 501-600 7 601-700 8 701-800 9 801-900 10 901-1000 11 1001-1100 12 1101-1200 13 1201-1300 14 1301-1400 15 1401-1500 16 1501-1600 17 1601-1700 18 1701-1800 19 1801-1900 20 1901-2000 21 2001-2100 22 2101-2200 23 2201-2300 24 2301-2400 25 2401-2500 26 2501-2600 27 2601-2700 28 2701-2800 29 2801-2900 30 2901-3000 31 3001-3100 32 3101-3200 33 3201-3300 34 3301-3400 35 3401-3500 36 3501-3600 37 3601-3700 38 3701-3800 39 3801-3900 40 3901-4000 41 4001-4100 42 4101-4200 43 4201-4300 44 4301-4400 45 4401-4500 46 4501-4600 47 4601-4700 48 4701-4800 49 4801-4900 50 4901-5000 51 5001-5100 52 5101-5200 53 5201-5300 54 5301-5400 55 5401-5500 56 5501-5600 57 5601-5700 58 5701-5800 59 5801-5900 60 5901-6000 61 6001-6100 62 6101-6200 63 6201-6300 64 6301-6400 65 6401-6500 66 6501-6600 67 6601-6700 68 6701-6800 69 6801-6900 70 6901-7000 71 7001-7100 72 7101-7200 73 7201-7300 74 7301-7400 75 7401-7500 76 7501-7600 77 7601-7700 78 7701-7800 79 7801-7900 80 7901-8000 81 8001-8100 82 8101-8200 83 8201-8300 84 8301-8400 85 8401-8500 86 8501-8600 87 8601-8700 88 8701-8800 89 8801-8900 90 8901-9000 91 9001-9100 92 9101-9200 93 9201-9300 94 9301-9400 95 9401-9500 96 9501-9600 97 9601-9700 98 9701-9800 99 9801-9900 100 9901-10000 101 10001-10100 102 10101-10200 103 10201-10300 104 10301-10400 105 10401-10500 106 10501-10600 107 10601-10700 108 10701-10800 109 10801-10900 110 10901-11000 111 11001-11100 112 11101-11200 113 11201-11300 114 11301-11400 115 11401-11500 116 11501-11600 117 11601-11700 118 11701-11800 119 11801-11900 120 11901-12000 121 12001-12100 122 12101-12200 123 12201-12300 124 12301-12400 125 12401-12500 126 12501-12600 127 12601-12700 128 12701-12800 129 12801-12900 130 12901-13000 131 13001-13100 132 13101-13200 133 13201-13300 134 13301-13400 135 13401-13500 136 13501-13600 137 13601-13700 138 13701-13800 139 13801-13900 140 13901-14000 141 14001-14100 142 14101-14200 143 14201-14300 144 14301-14400 145 14401-14500 146 14501-14600 147 14601-14700 148 14701-14800 149 14801-14900 150 14901-15000 151 15001-15100 152 15101-15200 153 15201-15300 154 15301-15400 155 15401-15500 156 15501-15600 157 15601-15700 158 15701-15800 159 15801-15900 160 15901-16000 161 16001-16100 162 16101-16200 163 16201-16300 164 16301-16400 165 16401-16500 166 16501-16600 167 16601-16700 168 16701-16800 169 16801-16900 170 16901-17000 171 17001-17100 172 17101-17200 173 17201-17300 174 17301-17400 175 17401-17500 176 17501-17600 177 17601-17700 178 17701-17800 179 17801-17900 180 17901-18000 181 18001-18100 182 18101-18200 183 18201-18300 184 18301-18400 185 18401-18500 186 18501-18600 187 18601-18700 188 18701-18800 189 18801-18900 190 18901-19000 191 19001-19100 192 19101-19200 193 19201-19300 194 19301-19400 195 19401-19500 196 19501-19600 197 19601-19700 198 19701-19800 199 19801-19900 200 19901-20000 201 20001-20100 202 20101-20200 203 20201-20300 204 20301-20400 205 20401-20500 206 20501-20600 207 20601-20700 208 20701-20800 209 20801-20900 210 20901-21000 211 21001-21100 212 21101-21200 213 21201-21300 214 21301-21400 215 21401-21500 216 21501-21600 217 21601-21700 218 21701-21800 219 21801-21900 220 21901-22000 221 22001-22100 222 22101-22200 223 22201-22300 224 22301-22400 225 22401-22500 226 22501-22600 227 22601-22700 228 22701-22800 229 22801-22900 230 22901-23000 231 23001-23100 232 23101-23200 233 23201-23300 234 23301-23400 235 23401-23500 236 23501-23600 237 23601-23700 238 23701-23800 239 23801-23900 240 23901-24000 241 24001-24100 242 24101-24200 243 24201-24300 244 24301-24400 245 24401-24500 246 24501-24600 247 24601-24700 248 24701-24800 249 24801-24900 250 24901-25000 251 25001-25100 252 25101-25200 253 25201-25300 254 25301-25400 255 25401-25500 256 25501-25600 257 25601-25700 258 25701-25800 259 25801-25900 260 25901-26000 261 26001-26100 262 26101-26200 263 26201-26300 264 26301-26400 265 26401-26500 266 26501-26600 267 26601-26700 268 26701-26800 269 26801-26900 270 26901-27000 271 27001-27100 272 27101-27200 273 27201-27300 274 27301-27400 275 27401-27500 276 27501-27600 277 27601-27700 278 27701-27800 279 27801-27900 280 27901-28000 281 28001-28100 282 28101-28200 283 28201-28300 284 28301-28400 285 28401-28500 286 28501-28600 287 28601-28700 288 28701-28800 289 28801-28900 290 28901-29000 291 29001-29100 292 29101-29200 293 29201-29300 294 29301-29400 295 29401-29500 296 29501-29600 297 29601-29700 298 29701-29800 299 29801-29900 300 29901-30000 301 30001-30100 302 30101-30200 303 30201-30300 304 30301-30400 305 30401-30500 306 30501-30600 307 30601-30700 308 30701-30800 309 30801-30843
  Copyright terms: Public domain < Previous  Next >