HomeHome Metamath Proof Explorer
Theorem List (p. 307 of 315)
< Previous  Next >
Browser slow? Try the
Unicode version.

Mirrors  >  Metamath Home Page  >  MPE Home Page  >  Theorem List Contents  >  Recent Proofs       This page: Page List

Color key:    Metamath Proof Explorer  Metamath Proof Explorer
(1-21490)
  Hilbert Space Explorer  Hilbert Space Explorer
(21491-23013)
  Users' Mathboxes  Users' Mathboxes
(23014-31421)
 

Theorem List for Metamath Proof Explorer - 30601-30700   *Has distinct variable group(s)
TypeLabelDescription
Statement
 
Theoremdibval2 30601* Value of the partial isomorphism B. (Contributed by NM, 18-Jan-2014.)
 |-  B  =  ( Base `  K )   &    |-  .<_  =  ( le `  K )   &    |-  H  =  ( LHyp `  K )   &    |-  T  =  ( ( LTrn `  K ) `  W )   &    |-  .0.  =  ( f  e.  T  |->  (  _I  |`  B )
 )   &    |-  J  =  ( (
 DIsoA `  K ) `  W )   &    |-  I  =  ( ( DIsoB `  K ) `  W )   =>    |-  ( ( ( K  e.  V  /\  W  e.  H )  /\  ( X  e.  B  /\  X  .<_  W ) ) 
 ->  ( I `  X )  =  ( ( J `  X )  X.  {  .0.  } ) )
 
Theoremdibopelval2 30602* Member of the partial isomorphism B. (Contributed by NM, 3-Mar-2014.) (Revised by Mario Carneiro, 6-May-2015.)
 |-  B  =  ( Base `  K )   &    |-  .<_  =  ( le `  K )   &    |-  H  =  ( LHyp `  K )   &    |-  T  =  ( ( LTrn `  K ) `  W )   &    |-  .0.  =  ( f  e.  T  |->  (  _I  |`  B )
 )   &    |-  J  =  ( (
 DIsoA `  K ) `  W )   &    |-  I  =  ( ( DIsoB `  K ) `  W )   =>    |-  ( ( ( K  e.  V  /\  W  e.  H )  /\  ( X  e.  B  /\  X  .<_  W ) ) 
 ->  ( <. F ,  S >.  e.  ( I `  X )  <->  ( F  e.  ( J `  X ) 
 /\  S  =  .0.  ) ) )
 
Theoremdibval3N 30603* Value of the partial isomorphism B for a lattice  K. (Contributed by NM, 24-Feb-2014.) (New usage is discouraged.)
 |-  B  =  ( Base `  K )   &    |-  .<_  =  ( le `  K )   &    |-  H  =  ( LHyp `  K )   &    |-  T  =  ( ( LTrn `  K ) `  W )   &    |-  R  =  ( ( trL `  K ) `  W )   &    |-  .0.  =  ( g  e.  T  |->  (  _I  |`  B )
 )   &    |-  I  =  ( (
 DIsoB `  K ) `  W )   =>    |-  ( ( ( K  e.  V  /\  W  e.  H )  /\  ( X  e.  B  /\  X  .<_  W ) ) 
 ->  ( I `  X )  =  ( {
 f  e.  T  |  ( R `  f ) 
 .<_  X }  X.  {  .0.  } ) )
 
Theoremdibelval3 30604* Member of the partial isomorphism B. (Contributed by NM, 26-Feb-2014.)
 |-  B  =  ( Base `  K )   &    |-  .<_  =  ( le `  K )   &    |-  H  =  ( LHyp `  K )   &    |-  T  =  ( ( LTrn `  K ) `  W )   &    |-  R  =  ( ( trL `  K ) `  W )   &    |-  .0.  =  ( g  e.  T  |->  (  _I  |`  B )
 )   &    |-  I  =  ( (
 DIsoB `  K ) `  W )   =>    |-  ( ( ( K  e.  V  /\  W  e.  H )  /\  ( X  e.  B  /\  X  .<_  W ) ) 
 ->  ( Y  e.  ( I `  X )  <->  E. f  e.  T  ( Y  =  <. f ,  .0.  >.  /\  ( R `  f )  .<_  X ) ) )
 
Theoremdibopelval3 30605* Member of the partial isomorphism B. (Contributed by NM, 3-Mar-2014.)
 |-  B  =  ( Base `  K )   &    |-  .<_  =  ( le `  K )   &    |-  H  =  ( LHyp `  K )   &    |-  T  =  ( ( LTrn `  K ) `  W )   &    |-  R  =  ( ( trL `  K ) `  W )   &    |-  .0.  =  ( g  e.  T  |->  (  _I  |`  B )
 )   &    |-  I  =  ( (
 DIsoB `  K ) `  W )   =>    |-  ( ( ( K  e.  V  /\  W  e.  H )  /\  ( X  e.  B  /\  X  .<_  W ) ) 
 ->  ( <. F ,  S >.  e.  ( I `  X )  <->  ( ( F  e.  T  /\  ( R `  F )  .<_  X )  /\  S  =  .0.  ) ) )
 
Theoremdibelval1st 30606 Membership in value of the partial isomorphism B for a lattice  K. (Contributed by NM, 13-Feb-2014.)
 |-  B  =  ( Base `  K )   &    |-  .<_  =  ( le `  K )   &    |-  H  =  ( LHyp `  K )   &    |-  J  =  ( ( DIsoA `  K ) `  W )   &    |-  I  =  ( ( DIsoB `  K ) `  W )   =>    |-  ( ( ( K  e.  V  /\  W  e.  H )  /\  ( X  e.  B  /\  X  .<_  W )  /\  Y  e.  ( I `  X ) )  ->  ( 1st `  Y )  e.  ( J `  X ) )
 
Theoremdibelval1st1 30607 Membership in value of the partial isomorphism B for a lattice  K. (Contributed by NM, 13-Feb-2014.)
 |-  B  =  ( Base `  K )   &    |-  .<_  =  ( le `  K )   &    |-  H  =  ( LHyp `  K )   &    |-  T  =  ( ( LTrn `  K ) `  W )   &    |-  I  =  ( ( DIsoB `  K ) `  W )   =>    |-  ( ( ( K  e.  V  /\  W  e.  H )  /\  ( X  e.  B  /\  X  .<_  W )  /\  Y  e.  ( I `  X ) )  ->  ( 1st `  Y )  e.  T )
 
Theoremdibelval1st2N 30608 Membership in value of the partial isomorphism B for a lattice  K. (Contributed by NM, 13-Feb-2014.) (New usage is discouraged.)
 |-  B  =  ( Base `  K )   &    |-  .<_  =  ( le `  K )   &    |-  H  =  ( LHyp `  K )   &    |-  T  =  ( ( LTrn `  K ) `  W )   &    |-  R  =  ( ( trL `  K ) `  W )   &    |-  I  =  ( ( DIsoB `  K ) `  W )   =>    |-  ( ( ( K  e.  V  /\  W  e.  H )  /\  ( X  e.  B  /\  X  .<_  W )  /\  Y  e.  ( I `  X ) )  ->  ( R `  ( 1st `  Y ) )  .<_  X )
 
Theoremdibelval2nd 30609* Membership in value of the partial isomorphism B for a lattice  K. (Contributed by NM, 13-Feb-2014.)
 |-  B  =  ( Base `  K )   &    |-  .<_  =  ( le `  K )   &    |-  H  =  ( LHyp `  K )   &    |-  T  =  ( ( LTrn `  K ) `  W )   &    |-  .0.  =  ( f  e.  T  |->  (  _I  |`  B )
 )   &    |-  I  =  ( (
 DIsoB `  K ) `  W )   =>    |-  ( ( ( K  e.  V  /\  W  e.  H )  /\  ( X  e.  B  /\  X  .<_  W )  /\  Y  e.  ( I `  X ) )  ->  ( 2nd `  Y )  =  .0.  )
 
Theoremdibn0 30610 The value of the partial isomorphism B is not empty. (Contributed by NM, 18-Jan-2014.)
 |-  B  =  ( Base `  K )   &    |-  .<_  =  ( le `  K )   &    |-  H  =  ( LHyp `  K )   &    |-  I  =  ( ( DIsoB `  K ) `  W )   =>    |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( X  e.  B  /\  X  .<_  W ) ) 
 ->  ( I `  X )  =/=  (/) )
 
Theoremdibfna 30611 Functionality and domain of the partial isomorphism B. (Contributed by NM, 17-Jan-2014.)
 |-  H  =  ( LHyp `  K )   &    |-  J  =  ( ( DIsoA `  K ) `  W )   &    |-  I  =  ( ( DIsoB `  K ) `  W )   =>    |-  ( ( K  e.  V  /\  W  e.  H )  ->  I  Fn  dom  J )
 
Theoremdibdiadm 30612 Domain of the partial isomorphism B. (Contributed by NM, 17-Jan-2014.)
 |-  H  =  ( LHyp `  K )   &    |-  J  =  ( ( DIsoA `  K ) `  W )   &    |-  I  =  ( ( DIsoB `  K ) `  W )   =>    |-  ( ( K  e.  V  /\  W  e.  H )  ->  dom  I  =  dom  J )
 
TheoremdibfnN 30613* Functionality and domain of the partial isomorphism B. (Contributed by NM, 17-Jan-2014.) (New usage is discouraged.)
 |-  B  =  ( Base `  K )   &    |-  .<_  =  ( le `  K )   &    |-  H  =  ( LHyp `  K )   &    |-  I  =  ( ( DIsoB `  K ) `  W )   =>    |-  ( ( K  e.  V  /\  W  e.  H )  ->  I  Fn  { x  e.  B  |  x  .<_  W } )
 
TheoremdibdmN 30614* Domain of the partial isomorphism A. (Contributed by NM, 8-Mar-2014.) (New usage is discouraged.)
 |-  B  =  ( Base `  K )   &    |-  .<_  =  ( le `  K )   &    |-  H  =  ( LHyp `  K )   &    |-  I  =  ( ( DIsoB `  K ) `  W )   =>    |-  ( ( K  e.  V  /\  W  e.  H )  ->  dom  I  =  { x  e.  B  |  x  .<_  W }
 )
 
TheoremdibeldmN 30615 Member of domain of the partial isomorphism B. (Contributed by NM, 17-Jan-2014.) (New usage is discouraged.)
 |-  B  =  ( Base `  K )   &    |-  .<_  =  ( le `  K )   &    |-  H  =  ( LHyp `  K )   &    |-  I  =  ( ( DIsoB `  K ) `  W )   =>    |-  ( ( K  e.  V  /\  W  e.  H )  ->  ( X  e.  dom 
 I 
 <->  ( X  e.  B  /\  X  .<_  W ) ) )
 
Theoremdibord 30616 The isomorphism B for a lattice  K is order-preserving in the region under co-atom  W. (Contributed by NM, 24-Feb-2014.)
 |-  B  =  ( Base `  K )   &    |-  .<_  =  ( le `  K )   &    |-  H  =  ( LHyp `  K )   &    |-  I  =  ( ( DIsoB `  K ) `  W )   =>    |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( X  e.  B  /\  X  .<_  W )  /\  ( Y  e.  B  /\  Y  .<_  W ) ) 
 ->  ( ( I `  X )  C_  ( I `
  Y )  <->  X  .<_  Y ) )
 
Theoremdib11N 30617 The isomorphism B for a lattice  K is one-to-one in the region under co-atom  W. (Contributed by NM, 24-Feb-2014.) (New usage is discouraged.)
 |-  B  =  ( Base `  K )   &    |-  .<_  =  ( le `  K )   &    |-  H  =  ( LHyp `  K )   &    |-  I  =  ( ( DIsoB `  K ) `  W )   =>    |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( X  e.  B  /\  X  .<_  W )  /\  ( Y  e.  B  /\  Y  .<_  W ) ) 
 ->  ( ( I `  X )  =  ( I `  Y )  <->  X  =  Y ) )
 
Theoremdibf11N 30618 The partial isomorphism A for a lattice  K is a one-to-one function. . Part of Lemma M of [Crawley] p. 120 line 27. (Contributed by NM, 4-Dec-2013.) (New usage is discouraged.)
 |-  H  =  ( LHyp `  K )   &    |-  I  =  ( ( DIsoB `  K ) `  W )   =>    |-  ( ( K  e.  HL  /\  W  e.  H )  ->  I : dom  I -1-1-onto-> ran  I )
 
TheoremdibclN 30619 Closure of partial isomorphism B for a lattice  K. (Contributed by NM, 8-Mar-2014.) (New usage is discouraged.)
 |-  H  =  ( LHyp `  K )   &    |-  I  =  ( ( DIsoB `  K ) `  W )   =>    |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  X  e.  dom  I
 )  ->  ( I `  X )  e.  ran  I )
 
Theoremdibvalrel 30620 The value of partial isomorphism B is a relation. (Contributed by NM, 8-Mar-2014.)
 |-  H  =  ( LHyp `  K )   &    |-  I  =  ( ( DIsoB `  K ) `  W )   =>    |-  ( ( K  e.  V  /\  W  e.  H )  ->  Rel  ( I `  X ) )
 
Theoremdib0 30621 The value of partial isomorphism B at the lattice zero is the singleton of the zero vector i.e. the zero subspace. (Contributed by NM, 27-Mar-2014.)
 |-  .0.  =  ( 0. `  K )   &    |-  H  =  ( LHyp `  K )   &    |-  I  =  ( ( DIsoB `  K ) `  W )   &    |-  U  =  ( ( DVecH `  K ) `  W )   &    |-  O  =  ( 0g `  U )   =>    |-  ( ( K  e.  HL  /\  W  e.  H )  ->  ( I `  .0.  )  =  { O } )
 
Theoremdib1dim 30622* Two expressions for the 1-dimensional subspaces of vector space H. (Contributed by NM, 24-Feb-2014.) (Revised by Mario Carneiro, 24-Jun-2014.)
 |-  B  =  ( Base `  K )   &    |-  H  =  ( LHyp `  K )   &    |-  T  =  ( ( LTrn `  K ) `  W )   &    |-  R  =  ( ( trL `  K ) `  W )   &    |-  E  =  ( ( TEndo `  K ) `  W )   &    |-  O  =  ( h  e.  T  |->  (  _I  |`  B )
 )   &    |-  I  =  ( (
 DIsoB `  K ) `  W )   =>    |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T )  ->  ( I `  ( R `  F ) )  =  { g  e.  ( T  X.  E )  | 
 E. s  e.  E  g  =  <. ( s `
  F ) ,  O >. } )
 
TheoremdibglbN 30623* Partial isomorphism B of a lattice glb. (Contributed by NM, 9-Mar-2014.) (New usage is discouraged.)
 |-  G  =  ( glb `  K )   &    |-  H  =  ( LHyp `  K )   &    |-  I  =  ( ( DIsoB `  K ) `  W )   =>    |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( S  C_  dom  I  /\  S  =/=  (/) ) )  ->  ( I `  ( G `
  S ) )  =  |^|_ x  e.  S  ( I `  x ) )
 
TheoremdibintclN 30624 The intersection of partial isomorphism B closed subspaces is a closed subspace. (Contributed by NM, 8-Mar-2014.) (New usage is discouraged.)
 |-  H  =  ( LHyp `  K )   &    |-  I  =  ( ( DIsoB `  K ) `  W )   =>    |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( S  C_  ran  I  /\  S  =/=  (/) ) ) 
 ->  |^| S  e.  ran  I )
 
Theoremdib1dim2 30625* Two expressions for a 1-dimensional subspace of vector space H (when  F is a nonzero vector i.e. non-identity translation). (Contributed by NM, 24-Feb-2014.)
 |-  B  =  ( Base `  K )   &    |-  H  =  ( LHyp `  K )   &    |-  T  =  ( ( LTrn `  K ) `  W )   &    |-  R  =  ( ( trL `  K ) `  W )   &    |-  O  =  ( h  e.  T  |->  (  _I  |`  B )
 )   &    |-  U  =  ( (
 DVecH `  K ) `  W )   &    |-  I  =  ( ( DIsoB `  K ) `  W )   &    |-  N  =  (
 LSpan `  U )   =>    |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T ) 
 ->  ( I `  ( R `  F ) )  =  ( N `  { <. F ,  O >. } ) )
 
Theoremdibss 30626 The partial isomorphism B maps to a set of vectors in full vector space H. (Contributed by NM, 1-Jan-2014.)
 |-  B  =  ( Base `  K )   &    |-  .<_  =  ( le `  K )   &    |-  H  =  ( LHyp `  K )   &    |-  I  =  ( ( DIsoB `  K ) `  W )   &    |-  U  =  ( ( DVecH `  K ) `  W )   &    |-  V  =  (
 Base `  U )   =>    |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( X  e.  B  /\  X  .<_  W ) ) 
 ->  ( I `  X )  C_  V )
 
Theoremdiblss 30627 The value of partial isomorphism B is a subspace of partial vector space H. TODO: use dib* specific theorems instead of dia* ones to shorten proof? (Contributed by NM, 11-Feb-2014.)
 |-  B  =  ( Base `  K )   &    |-  .<_  =  ( le `  K )   &    |-  H  =  ( LHyp `  K )   &    |-  U  =  ( ( DVecH `  K ) `  W )   &    |-  I  =  ( ( DIsoB `  K ) `  W )   &    |-  S  =  (
 LSubSp `  U )   =>    |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( X  e.  B  /\  X  .<_  W ) ) 
 ->  ( I `  X )  e.  S )
 
Theoremdiblsmopel 30628* Membership in subspace sum for partial isomorphism B. (Contributed by NM, 21-Sep-2014.) (Revised by Mario Carneiro, 6-May-2015.)
 |-  B  =  ( Base `  K )   &    |-  .<_  =  ( le `  K )   &    |-  H  =  ( LHyp `  K )   &    |-  T  =  ( ( LTrn `  K ) `  W )   &    |-  O  =  ( f  e.  T  |->  (  _I  |`  B )
 )   &    |-  V  =  ( (
 DVecA `  K ) `  W )   &    |-  U  =  ( ( DVecH `  K ) `  W )   &    |-  .(+)  =  ( LSSum `  V )   &    |-  .+b  =  ( LSSum `  U )   &    |-  J  =  ( ( DIsoA `  K ) `  W )   &    |-  I  =  ( ( DIsoB `  K ) `  W )   &    |-  ( ph  ->  ( K  e.  HL  /\  W  e.  H ) )   &    |-  ( ph  ->  ( X  e.  B  /\  X  .<_  W ) )   &    |-  ( ph  ->  ( Y  e.  B  /\  Y  .<_  W ) )   =>    |-  ( ph  ->  ( <. F ,  S >.  e.  ( ( I `  X )  .+b  ( I `
  Y ) )  <-> 
 ( F  e.  (
 ( J `  X )  .(+)  ( J `  Y ) )  /\  S  =  O )
 ) )
 
Syntaxcdic 30629 Extend class notation with isomorphism C.
 class  DIsoC
 
Definitiondf-dic 30630* Isomorphism C has domain of lattice atoms that are not less than or equal to the fiducial co-atom 
w. The value is a one-dimensional subspace generated by the pair consisting of the  iota_ vector below and the endomorphism ring unit. Definition of phi(q) in [Crawley] p. 121. Note that we use the fixed atom  ( ( oc k )  w ) to represent the p in their "Choose an atom p..." on line 21. (Contributed by NM, 15-Dec-2013.)
 |-  DIsoC  =  ( k  e.  _V  |->  ( w  e.  ( LHyp `  k )  |->  ( q  e.  { r  e.  ( Atoms `  k )  |  -.  r ( le `  k ) w }  |->  { <. f ,  s >.  |  ( f  =  ( s `  ( iota_
 g  e.  ( (
 LTrn `  k ) `  w ) ( g `
  ( ( oc
 `  k ) `  w ) )  =  q ) )  /\  s  e.  ( ( TEndo `  k ) `  w ) ) }
 ) ) )
 
Theoremdicffval 30631* The partial isomorphism C for a lattice  K. (Contributed by NM, 15-Dec-2013.)
 |-  .<_  =  ( le `  K )   &    |-  A  =  ( Atoms `  K )   &    |-  H  =  (
 LHyp `  K )   =>    |-  ( K  e.  V  ->  ( DIsoC `  K )  =  ( w  e.  H  |->  ( q  e. 
 { r  e.  A  |  -.  r  .<_  w }  |->  { <. f ,  s >.  |  ( f  =  ( s `  ( iota_
 g  e.  ( (
 LTrn `  K ) `  w ) ( g `
  ( ( oc
 `  K ) `  w ) )  =  q ) )  /\  s  e.  ( ( TEndo `  K ) `  w ) ) }
 ) ) )
 
Theoremdicfval 30632* The partial isomorphism C for a lattice  K. (Contributed by NM, 15-Dec-2013.)
 |-  .<_  =  ( le `  K )   &    |-  A  =  ( Atoms `  K )   &    |-  H  =  (
 LHyp `  K )   &    |-  P  =  ( ( oc `  K ) `  W )   &    |-  T  =  ( (
 LTrn `  K ) `  W )   &    |-  E  =  ( ( TEndo `  K ) `  W )   &    |-  I  =  ( ( DIsoC `  K ) `  W )   =>    |-  ( ( K  e.  V  /\  W  e.  H )  ->  I  =  ( q  e.  { r  e.  A  |  -.  r  .<_  W }  |->  { <. f ,  s >.  |  ( f  =  ( s `
  ( iota_ g  e.  T ( g `  P )  =  q
 ) )  /\  s  e.  E ) } )
 )
 
Theoremdicval 30633* The partial isomorphism C for a lattice  K. (Contributed by NM, 15-Dec-2013.) (Revised by Mario Carneiro, 22-Sep-2015.)
 |-  .<_  =  ( le `  K )   &    |-  A  =  ( Atoms `  K )   &    |-  H  =  (
 LHyp `  K )   &    |-  P  =  ( ( oc `  K ) `  W )   &    |-  T  =  ( (
 LTrn `  K ) `  W )   &    |-  E  =  ( ( TEndo `  K ) `  W )   &    |-  I  =  ( ( DIsoC `  K ) `  W )   =>    |-  ( ( ( K  e.  V  /\  W  e.  H )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) ) 
 ->  ( I `  Q )  =  { <. f ,  s >.  |  (
 f  =  ( s `
  ( iota_ g  e.  T ( g `  P )  =  Q ) )  /\  s  e.  E ) } )
 
Theoremdicopelval 30634* Membership in value of the partial isomorphism C for a lattice  K. (Contributed by NM, 15-Feb-2014.)
 |-  .<_  =  ( le `  K )   &    |-  A  =  ( Atoms `  K )   &    |-  H  =  (
 LHyp `  K )   &    |-  P  =  ( ( oc `  K ) `  W )   &    |-  T  =  ( (
 LTrn `  K ) `  W )   &    |-  E  =  ( ( TEndo `  K ) `  W )   &    |-  I  =  ( ( DIsoC `  K ) `  W )   &    |-  F  e.  _V   &    |-  S  e.  _V   =>    |-  ( ( ( K  e.  V  /\  W  e.  H )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) ) 
 ->  ( <. F ,  S >.  e.  ( I `  Q )  <->  ( F  =  ( S `  ( iota_ g  e.  T ( g `
  P )  =  Q ) )  /\  S  e.  E )
 ) )
 
TheoremdicelvalN 30635* Membership in value of the partial isomorphism C for a lattice  K. (Contributed by NM, 25-Feb-2014.) (New usage is discouraged.)
 |-  .<_  =  ( le `  K )   &    |-  A  =  ( Atoms `  K )   &    |-  H  =  (
 LHyp `  K )   &    |-  P  =  ( ( oc `  K ) `  W )   &    |-  T  =  ( (
 LTrn `  K ) `  W )   &    |-  E  =  ( ( TEndo `  K ) `  W )   &    |-  I  =  ( ( DIsoC `  K ) `  W )   =>    |-  ( ( ( K  e.  V  /\  W  e.  H )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) ) 
 ->  ( Y  e.  ( I `  Q )  <->  ( Y  e.  ( _V  X.  _V )  /\  ( ( 1st `  Y )  =  ( ( 2nd `  Y ) `  ( iota_ g  e.  T ( g `  P )  =  Q )
 )  /\  ( 2nd `  Y )  e.  E ) ) ) )
 
Theoremdicval2 30636* The partial isomorphism C for a lattice  K. (Contributed by NM, 20-Feb-2014.)
 |-  .<_  =  ( le `  K )   &    |-  A  =  ( Atoms `  K )   &    |-  H  =  (
 LHyp `  K )   &    |-  P  =  ( ( oc `  K ) `  W )   &    |-  T  =  ( (
 LTrn `  K ) `  W )   &    |-  E  =  ( ( TEndo `  K ) `  W )   &    |-  I  =  ( ( DIsoC `  K ) `  W )   &    |-  G  =  (
 iota_ g  e.  T ( g `  P )  =  Q )   =>    |-  (
 ( ( K  e.  V  /\  W  e.  H )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  ->  ( I `  Q )  =  { <. f ,  s >.  |  ( f  =  ( s `  G )  /\  s  e.  E ) } )
 
Theoremdicelval3 30637* Member of the partial isomorphism C. (Contributed by NM, 26-Feb-2014.)
 |-  .<_  =  ( le `  K )   &    |-  A  =  ( Atoms `  K )   &    |-  H  =  (
 LHyp `  K )   &    |-  P  =  ( ( oc `  K ) `  W )   &    |-  T  =  ( (
 LTrn `  K ) `  W )   &    |-  E  =  ( ( TEndo `  K ) `  W )   &    |-  I  =  ( ( DIsoC `  K ) `  W )   &    |-  G  =  (
 iota_ g  e.  T ( g `  P )  =  Q )   =>    |-  (
 ( ( K  e.  V  /\  W  e.  H )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  ->  ( Y  e.  ( I `  Q )  <->  E. s  e.  E  Y  =  <. ( s `
  G ) ,  s >. ) )
 
Theoremdicopelval2 30638* Membership in value of the partial isomorphism C for a lattice  K. (Contributed by NM, 20-Feb-2014.)
 |-  .<_  =  ( le `  K )   &    |-  A  =  ( Atoms `  K )   &    |-  H  =  (
 LHyp `  K )   &    |-  P  =  ( ( oc `  K ) `  W )   &    |-  T  =  ( (
 LTrn `  K ) `  W )   &    |-  E  =  ( ( TEndo `  K ) `  W )   &    |-  I  =  ( ( DIsoC `  K ) `  W )   &    |-  G  =  (
 iota_ g  e.  T ( g `  P )  =  Q )   &    |-  F  e.  _V   &    |-  S  e.  _V   =>    |-  (
 ( ( K  e.  V  /\  W  e.  H )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  ->  ( <. F ,  S >.  e.  ( I `  Q ) 
 <->  ( F  =  ( S `  G ) 
 /\  S  e.  E ) ) )
 
Theoremdicelval2N 30639* Membership in value of the partial isomorphism C for a lattice  K. (Contributed by NM, 25-Feb-2014.) (New usage is discouraged.)
 |-  .<_  =  ( le `  K )   &    |-  A  =  ( Atoms `  K )   &    |-  H  =  (
 LHyp `  K )   &    |-  P  =  ( ( oc `  K ) `  W )   &    |-  T  =  ( (
 LTrn `  K ) `  W )   &    |-  E  =  ( ( TEndo `  K ) `  W )   &    |-  I  =  ( ( DIsoC `  K ) `  W )   &    |-  G  =  (
 iota_ g  e.  T ( g `  P )  =  Q )   =>    |-  (
 ( ( K  e.  V  /\  W  e.  H )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  ->  ( Y  e.  ( I `  Q )  <->  ( Y  e.  ( _V  X.  _V )  /\  ( ( 1st `  Y )  =  ( ( 2nd `  Y ) `  G )  /\  ( 2nd `  Y )  e.  E ) ) ) )
 
TheoremdicfnN 30640* Functionality and domain of the partial isomorphism C. (Contributed by NM, 8-Mar-2014.) (New usage is discouraged.)
 |-  .<_  =  ( le `  K )   &    |-  A  =  ( Atoms `  K )   &    |-  H  =  (
 LHyp `  K )   &    |-  I  =  ( ( DIsoC `  K ) `  W )   =>    |-  ( ( K  e.  V  /\  W  e.  H )  ->  I  Fn  { p  e.  A  |  -.  p  .<_  W }
 )
 
TheoremdicdmN 30641* Domain of the partial isomorphism C. (Contributed by NM, 8-Mar-2014.) (New usage is discouraged.)
 |-  .<_  =  ( le `  K )   &    |-  A  =  ( Atoms `  K )   &    |-  H  =  (
 LHyp `  K )   &    |-  I  =  ( ( DIsoC `  K ) `  W )   =>    |-  ( ( K  e.  V  /\  W  e.  H )  ->  dom  I  =  { p  e.  A  |  -.  p  .<_  W }
 )
 
TheoremdicvalrelN 30642 The value of partial isomorphism C is a relation. (Contributed by NM, 8-Mar-2014.) (New usage is discouraged.)
 |-  H  =  ( LHyp `  K )   &    |-  I  =  ( ( DIsoC `  K ) `  W )   =>    |-  ( ( K  e.  V  /\  W  e.  H )  ->  Rel  ( I `  X ) )
 
Theoremdicssdvh 30643 The partial isomorphism C maps to a set of vectors in full vector space H. (Contributed by NM, 19-Jan-2014.)
 |-  .<_  =  ( le `  K )   &    |-  A  =  ( Atoms `  K )   &    |-  H  =  (
 LHyp `  K )   &    |-  I  =  ( ( DIsoC `  K ) `  W )   &    |-  U  =  ( ( DVecH `  K ) `  W )   &    |-  V  =  ( Base `  U )   =>    |-  (
 ( ( K  e.  HL  /\  W  e.  H )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  ->  ( I `  Q )  C_  V )
 
Theoremdicelval1sta 30644* Membership in value of the partial isomorphism C for a lattice  K. (Contributed by NM, 16-Feb-2014.)
 |-  .<_  =  ( le `  K )   &    |-  A  =  ( Atoms `  K )   &    |-  H  =  (
 LHyp `  K )   &    |-  P  =  ( ( oc `  K ) `  W )   &    |-  T  =  ( (
 LTrn `  K ) `  W )   &    |-  I  =  ( ( DIsoC `  K ) `  W )   =>    |-  ( ( ( K  e.  V  /\  W  e.  H )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  Y  e.  ( I `  Q ) )  ->  ( 1st `  Y )  =  ( ( 2nd `  Y ) `  ( iota_ g  e.  T ( g `  P )  =  Q ) ) )
 
Theoremdicelval1stN 30645 Membership in value of the partial isomorphism C for a lattice  K. (Contributed by NM, 16-Feb-2014.) (New usage is discouraged.)
 |-  .<_  =  ( le `  K )   &    |-  A  =  ( Atoms `  K )   &    |-  H  =  (
 LHyp `  K )   &    |-  T  =  ( ( LTrn `  K ) `  W )   &    |-  I  =  ( ( DIsoC `  K ) `  W )   =>    |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) 
 /\  Y  e.  ( I `  Q ) ) 
 ->  ( 1st `  Y )  e.  T )
 
Theoremdicelval2nd 30646 Membership in value of the partial isomorphism C for a lattice  K. (Contributed by NM, 16-Feb-2014.)
 |-  .<_  =  ( le `  K )   &    |-  A  =  ( Atoms `  K )   &    |-  H  =  (
 LHyp `  K )   &    |-  E  =  ( ( TEndo `  K ) `  W )   &    |-  I  =  ( ( DIsoC `  K ) `  W )   =>    |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) 
 /\  Y  e.  ( I `  Q ) ) 
 ->  ( 2nd `  Y )  e.  E )
 
Theoremdicvaddcl 30647 Membership in value of the partial isomorphism C is closed under vector sum. (Contributed by NM, 16-Feb-2014.)
 |-  .<_  =  ( le `  K )   &    |-  A  =  ( Atoms `  K )   &    |-  H  =  (
 LHyp `  K )   &    |-  U  =  ( ( DVecH `  K ) `  W )   &    |-  I  =  ( ( DIsoC `  K ) `  W )   &    |-  .+  =  ( +g  `  U )   =>    |-  (
 ( ( K  e.  HL  /\  W  e.  H )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( X  e.  ( I `  Q )  /\  Y  e.  ( I `  Q ) ) )  ->  ( X  .+  Y )  e.  ( I `  Q ) )
 
Theoremdicvscacl 30648 Membership in value of the partial isomorphism C is closed under scalar product. (Contributed by NM, 16-Feb-2014.) (Revised by Mario Carneiro, 24-Jun-2014.)
 |-  .<_  =  ( le `  K )   &    |-  A  =  ( Atoms `  K )   &    |-  H  =  (
 LHyp `  K )   &    |-  E  =  ( ( TEndo `  K ) `  W )   &    |-  U  =  ( ( DVecH `  K ) `  W )   &    |-  I  =  ( ( DIsoC `  K ) `  W )   &    |-  .x.  =  ( .s `  U )   =>    |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( X  e.  E  /\  Y  e.  ( I `
  Q ) ) )  ->  ( X  .x.  Y )  e.  ( I `  Q ) )
 
Theoremdicn0 30649 The value of the partial isomorphism C is not empty. (Contributed by NM, 15-Feb-2014.)
 |-  .<_  =  ( le `  K )   &    |-  A  =  ( Atoms `  K )   &    |-  H  =  (
 LHyp `  K )   &    |-  I  =  ( ( DIsoC `  K ) `  W )   =>    |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  ->  ( I `  Q )  =/=  (/) )
 
Theoremdiclss 30650 The value of partial isomorphism C is a subspace of partial vector space H. (Contributed by NM, 16-Feb-2014.)
 |-  .<_  =  ( le `  K )   &    |-  A  =  ( Atoms `  K )   &    |-  H  =  (
 LHyp `  K )   &    |-  U  =  ( ( DVecH `  K ) `  W )   &    |-  I  =  ( ( DIsoC `  K ) `  W )   &    |-  S  =  ( LSubSp `  U )   =>    |-  (
 ( ( K  e.  HL  /\  W  e.  H )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  ->  ( I `  Q )  e.  S )
 
Theoremdiclspsn 30651* The value of isomorphism C is spanned by vector  F. Part of proof of Lemma N of [Crawley] p. 121 line 29. (Contributed by NM, 21-Feb-2014.) (Revised by Mario Carneiro, 24-Jun-2014.)
 |-  .<_  =  ( le `  K )   &    |-  A  =  ( Atoms `  K )   &    |-  H  =  (
 LHyp `  K )   &    |-  P  =  ( ( oc `  K ) `  W )   &    |-  T  =  ( (
 LTrn `  K ) `  W )   &    |-  I  =  ( ( DIsoC `  K ) `  W )   &    |-  U  =  ( ( DVecH `  K ) `  W )   &    |-  N  =  (
 LSpan `  U )   &    |-  F  =  ( iota_ f  e.  T ( f `  P )  =  Q )   =>    |-  (
 ( ( K  e.  HL  /\  W  e.  H )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  ->  ( I `  Q )  =  ( N `  { <. F ,  (  _I  |`  T )
 >. } ) )
 
Theoremcdlemn2 30652* Part of proof of Lemma N of [Crawley] p. 121 line 30. (Contributed by NM, 21-Feb-2014.)
 |-  B  =  ( Base `  K )   &    |-  .<_  =  ( le `  K )   &    |- 
 .\/  =  ( join `  K )   &    |-  A  =  (
 Atoms `  K )   &    |-  H  =  ( LHyp `  K )   &    |-  T  =  ( ( LTrn `  K ) `  W )   &    |-  R  =  ( ( trL `  K ) `  W )   &    |-  F  =  ( iota_ h  e.  T ( h `  Q )  =  S )   =>    |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( S  e.  A  /\  -.  S  .<_  W )  /\  ( X  e.  B  /\  X  .<_  W ) ) 
 /\  S  .<_  ( Q 
 .\/  X ) )  ->  ( R `  F ) 
 .<_  X )
 
Theoremcdlemn2a 30653* Part of proof of Lemma N of [Crawley] p. 121. (Contributed by NM, 24-Feb-2014.)
 |-  B  =  ( Base `  K )   &    |-  .<_  =  ( le `  K )   &    |- 
 .\/  =  ( join `  K )   &    |-  A  =  (
 Atoms `  K )   &    |-  H  =  ( LHyp `  K )   &    |-  T  =  ( ( LTrn `  K ) `  W )   &    |-  R  =  ( ( trL `  K ) `  W )   &    |-  O  =  ( f  e.  T  |->  (  _I  |`  B )
 )   &    |-  I  =  ( (
 DIsoB `  K ) `  W )   &    |-  U  =  ( ( DVecH `  K ) `  W )   &    |-  N  =  (
 LSpan `  U )   &    |-  F  =  ( iota_ h  e.  T ( h `  Q )  =  S )   =>    |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( S  e.  A  /\  -.  S  .<_  W )  /\  ( X  e.  B  /\  X  .<_  W ) ) 
 /\  S  .<_  ( Q 
 .\/  X ) )  ->  ( N `  { <. F ,  O >. } )  C_  ( I `  X ) )
 
Theoremcdlemn3 30654* Part of proof of Lemma N of [Crawley] p. 121 line 31. (Contributed by NM, 21-Feb-2014.)
 |-  .<_  =  ( le `  K )   &    |-  A  =  ( Atoms `  K )   &    |-  P  =  ( ( oc `  K ) `  W )   &    |-  H  =  ( LHyp `  K )   &    |-  T  =  ( ( LTrn `  K ) `  W )   &    |-  F  =  ( iota_ h  e.  T ( h `  P )  =  Q )   &    |-  G  =  ( iota_ h  e.  T ( h `  P )  =  R )   &    |-  J  =  ( iota_ h  e.  T ( h `  Q )  =  R )   =>    |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) 
 /\  ( R  e.  A  /\  -.  R  .<_  W ) )  ->  ( J  o.  F )  =  G )
 
Theoremcdlemn4 30655* Part of proof of Lemma N of [Crawley] p. 121 line 31. (Contributed by NM, 21-Feb-2014.) (Revised by Mario Carneiro, 24-Jun-2014.)
 |-  B  =  ( Base `  K )   &    |-  .<_  =  ( le `  K )   &    |-  A  =  ( Atoms `  K )   &    |-  P  =  ( ( oc `  K ) `  W )   &    |-  H  =  ( LHyp `  K )   &    |-  T  =  ( ( LTrn `  K ) `  W )   &    |-  O  =  ( h  e.  T  |->  (  _I  |`  B )
 )   &    |-  U  =  ( (
 DVecH `  K ) `  W )   &    |-  F  =  (
 iota_ h  e.  T ( h `  P )  =  Q )   &    |-  G  =  ( iota_ h  e.  T ( h `  P )  =  R )   &    |-  J  =  ( iota_ h  e.  T ( h `  Q )  =  R )   &    |-  .+  =  ( +g  `  U )   =>    |-  (
 ( ( K  e.  HL  /\  W  e.  H )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( R  e.  A  /\  -.  R  .<_  W ) ) 
 ->  <. G ,  (  _I  |`  T ) >.  =  ( <. F ,  (  _I  |`  T ) >.  .+ 
 <. J ,  O >. ) )
 
Theoremcdlemn4a 30656* Part of proof of Lemma N of [Crawley] p. 121 line 32. (Contributed by NM, 24-Feb-2014.)
 |-  B  =  ( Base `  K )   &    |-  .<_  =  ( le `  K )   &    |-  A  =  ( Atoms `  K )   &    |-  P  =  ( ( oc `  K ) `  W )   &    |-  H  =  ( LHyp `  K )   &    |-  T  =  ( ( LTrn `  K ) `  W )   &    |-  O  =  ( h  e.  T  |->  (  _I  |`  B )
 )   &    |-  U  =  ( (
 DVecH `  K ) `  W )   &    |-  F  =  (
 iota_ h  e.  T ( h `  P )  =  Q )   &    |-  G  =  ( iota_ h  e.  T ( h `  P )  =  R )   &    |-  J  =  ( iota_ h  e.  T ( h `  Q )  =  R )   &    |-  N  =  ( LSpan `  U )   &    |-  .(+)  =  (
 LSSum `  U )   =>    |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) 
 /\  ( R  e.  A  /\  -.  R  .<_  W ) )  ->  ( N `  { <. G ,  (  _I  |`  T ) >. } )  C_  (
 ( N `  { <. F ,  (  _I  |`  T )
 >. } )  .(+)  ( N `
  { <. J ,  O >. } ) ) )
 
Theoremcdlemn5pre 30657* Part of proof of Lemma N of [Crawley] p. 121 line 32. (Contributed by NM, 25-Feb-2014.)
 |-  B  =  ( Base `  K )   &    |-  .<_  =  ( le `  K )   &    |- 
 .\/  =  ( join `  K )   &    |-  A  =  (
 Atoms `  K )   &    |-  H  =  ( LHyp `  K )   &    |-  U  =  ( ( DVecH `  K ) `  W )   &    |-  .(+)  =  (
 LSSum `  U )   &    |-  I  =  ( ( DIsoB `  K ) `  W )   &    |-  J  =  ( ( DIsoC `  K ) `  W )   &    |-  P  =  ( ( oc `  K ) `  W )   &    |-  O  =  ( h  e.  T  |->  (  _I  |`  B ) )   &    |-  T  =  ( ( LTrn `  K ) `  W )   &    |-  E  =  ( ( TEndo `  K ) `  W )   &    |-  N  =  ( LSpan `  U )   &    |-  F  =  ( iota_ h  e.  T ( h `  P )  =  Q )   &    |-  G  =  ( iota_ h  e.  T ( h `  P )  =  R )   &    |-  M  =  ( iota_ h  e.  T ( h `  Q )  =  R )   =>    |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( R  e.  A  /\  -.  R  .<_  W )  /\  ( X  e.  B  /\  X  .<_  W ) ) 
 /\  R  .<_  ( Q 
 .\/  X ) )  ->  ( J `  R ) 
 C_  ( ( J `
  Q )  .(+)  ( I `  X ) ) )
 
Theoremcdlemn5 30658 Part of proof of Lemma N of [Crawley] p. 121 line 32. (Contributed by NM, 25-Feb-2014.)
 |-  B  =  ( Base `  K )   &    |-  .<_  =  ( le `  K )   &    |- 
 .\/  =  ( join `  K )   &    |-  A  =  (
 Atoms `  K )   &    |-  H  =  ( LHyp `  K )   &    |-  U  =  ( ( DVecH `  K ) `  W )   &    |-  .(+)  =  (
 LSSum `  U )   &    |-  I  =  ( ( DIsoB `  K ) `  W )   &    |-  J  =  ( ( DIsoC `  K ) `  W )   =>    |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( R  e.  A  /\  -.  R  .<_  W )  /\  ( X  e.  B  /\  X  .<_  W ) ) 
 /\  R  .<_  ( Q 
 .\/  X ) )  ->  ( J `  R ) 
 C_  ( ( J `
  Q )  .(+)  ( I `  X ) ) )
 
Theoremcdlemn6 30659* Part of proof of Lemma N of [Crawley] p. 121 line 35. (Contributed by NM, 26-Feb-2014.)
 |-  B  =  ( Base `  K )   &    |-  .<_  =  ( le `  K )   &    |-  A  =  ( Atoms `  K )   &    |-  H  =  (
 LHyp `  K )   &    |-  P  =  ( ( oc `  K ) `  W )   &    |-  O  =  ( h  e.  T  |->  (  _I  |`  B ) )   &    |-  T  =  ( ( LTrn `  K ) `  W )   &    |-  E  =  ( ( TEndo `  K ) `  W )   &    |-  U  =  ( ( DVecH `  K ) `  W )   &    |-  .+  =  ( +g  `  U )   &    |-  F  =  ( iota_ h  e.  T ( h `  P )  =  Q )   =>    |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( R  e.  A  /\  -.  R  .<_  W ) ) 
 /\  ( s  e.  E  /\  g  e.  T ) )  ->  ( <. ( s `  F ) ,  s >.  .+  <. g ,  O >. )  =  <. ( ( s `  F )  o.  g ) ,  s >. )
 
Theoremcdlemn7 30660* Part of proof of Lemma N of [Crawley] p. 121 line 36. (Contributed by NM, 26-Feb-2014.)
 |-  B  =  ( Base `  K )   &    |-  .<_  =  ( le `  K )   &    |-  A  =  ( Atoms `  K )   &    |-  H  =  (
 LHyp `  K )   &    |-  P  =  ( ( oc `  K ) `  W )   &    |-  O  =  ( h  e.  T  |->  (  _I  |`  B ) )   &    |-  T  =  ( ( LTrn `  K ) `  W )   &    |-  E  =  ( ( TEndo `  K ) `  W )   &    |-  U  =  ( ( DVecH `  K ) `  W )   &    |-  .+  =  ( +g  `  U )   &    |-  F  =  ( iota_ h  e.  T ( h `  P )  =  Q )   &    |-  G  =  ( iota_ h  e.  T ( h `  P )  =  R )   =>    |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( R  e.  A  /\  -.  R  .<_  W ) ) 
 /\  ( s  e.  E  /\  g  e.  T  /\  <. G ,  (  _I  |`  T ) >.  =  ( <. ( s `
  F ) ,  s >.  .+  <. g ,  O >. ) ) ) 
 ->  ( G  =  ( ( s `  F )  o.  g )  /\  (  _I  |`  T )  =  s ) )
 
Theoremcdlemn8 30661* Part of proof of Lemma N of [Crawley] p. 121 line 36. (Contributed by NM, 26-Feb-2014.)
 |-  B  =  ( Base `  K )   &    |-  .<_  =  ( le `  K )   &    |-  A  =  ( Atoms `  K )   &    |-  H  =  (
 LHyp `  K )   &    |-  P  =  ( ( oc `  K ) `  W )   &    |-  O  =  ( h  e.  T  |->  (  _I  |`  B ) )   &    |-  T  =  ( ( LTrn `  K ) `  W )   &    |-  E  =  ( ( TEndo `  K ) `  W )   &    |-  U  =  ( ( DVecH `  K ) `  W )   &    |-  .+  =  ( +g  `  U )   &    |-  F  =  ( iota_ h  e.  T ( h `  P )  =  Q )   &    |-  G  =  ( iota_ h  e.  T ( h `  P )  =  R )   =>    |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( R  e.  A  /\  -.  R  .<_  W ) ) 
 /\  ( s  e.  E  /\  g  e.  T  /\  <. G ,  (  _I  |`  T ) >.  =  ( <. ( s `
  F ) ,  s >.  .+  <. g ,  O >. ) ) ) 
 ->  g  =  ( G  o.  `' F ) )
 
Theoremcdlemn9 30662* Part of proof of Lemma N of [Crawley] p. 121 line 36. (Contributed by NM, 27-Feb-2014.)
 |-  B  =  ( Base `  K )   &    |-  .<_  =  ( le `  K )   &    |-  A  =  ( Atoms `  K )   &    |-  H  =  (
 LHyp `  K )   &    |-  P  =  ( ( oc `  K ) `  W )   &    |-  O  =  ( h  e.  T  |->  (  _I  |`  B ) )   &    |-  T  =  ( ( LTrn `  K ) `  W )   &    |-  E  =  ( ( TEndo `  K ) `  W )   &    |-  U  =  ( ( DVecH `  K ) `  W )   &    |-  .+  =  ( +g  `  U )   &    |-  F  =  ( iota_ h  e.  T ( h `  P )  =  Q )   &    |-  G  =  ( iota_ h  e.  T ( h `  P )  =  R )   =>    |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( R  e.  A  /\  -.  R  .<_  W ) ) 
 /\  ( s  e.  E  /\  g  e.  T  /\  <. G ,  (  _I  |`  T ) >.  =  ( <. ( s `
  F ) ,  s >.  .+  <. g ,  O >. ) ) ) 
 ->  ( g `  Q )  =  R )
 
Theoremcdlemn10 30663 Part of proof of Lemma N of [Crawley] p. 121 line 36. (Contributed by NM, 27-Feb-2014.)
 |-  B  =  ( Base `  K )   &    |-  .<_  =  ( le `  K )   &    |- 
 .\/  =  ( join `  K )   &    |-  A  =  (
 Atoms `  K )   &    |-  H  =  ( LHyp `  K )   &    |-  T  =  ( ( LTrn `  K ) `  W )   &    |-  R  =  ( ( trL `  K ) `  W )   =>    |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( S  e.  A  /\  -.  S  .<_  W )  /\  ( X  e.  B  /\  X  .<_  W ) ) 
 /\  ( g  e.  T  /\  ( g `
  Q )  =  S  /\  ( R `
  g )  .<_  X ) )  ->  S  .<_  ( Q  .\/  X ) )
 
Theoremcdlemn11a 30664* Part of proof of Lemma N of [Crawley] p. 121 line 37. (Contributed by NM, 27-Feb-2014.)
 |-  B  =  ( Base `  K )   &    |-  .<_  =  ( le `  K )   &    |- 
 .\/  =  ( join `  K )   &    |-  A  =  (
 Atoms `  K )   &    |-  H  =  ( LHyp `  K )   &    |-  P  =  ( ( oc `  K ) `  W )   &    |-  O  =  ( h  e.  T  |->  (  _I  |`  B ) )   &    |-  T  =  ( ( LTrn `  K ) `  W )   &    |-  R  =  ( ( trL `  K ) `  W )   &    |-  E  =  ( ( TEndo `  K ) `  W )   &    |-  I  =  ( ( DIsoB `  K ) `  W )   &    |-  J  =  ( ( DIsoC `  K ) `  W )   &    |-  U  =  ( ( DVecH `  K ) `  W )   &    |-  .+  =  ( +g  `  U )   &    |-  .(+)  =  (
 LSSum `  U )   &    |-  F  =  ( iota_ h  e.  T ( h `  P )  =  Q )   &    |-  G  =  ( iota_ h  e.  T ( h `  P )  =  N )   =>    |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( N  e.  A  /\  -.  N  .<_  W )  /\  ( X  e.  B  /\  X  .<_  W ) ) 
 /\  ( J `  N )  C_  ( ( J `  Q ) 
 .(+)  ( I `  X ) ) )  ->  <. G ,  (  _I  |`  T ) >.  e.  ( J `  N ) )
 
Theoremcdlemn11b 30665* Part of proof of Lemma N of [Crawley] p. 121 line 37. (Contributed by NM, 27-Feb-2014.)
 |-  B  =  ( Base `  K )   &    |-  .<_  =  ( le `  K )   &    |- 
 .\/  =  ( join `  K )   &    |-  A  =  (
 Atoms `  K )   &    |-  H  =  ( LHyp `  K )   &    |-  P  =  ( ( oc `  K ) `  W )   &    |-  O  =  ( h  e.  T  |->  (  _I  |`  B ) )   &    |-  T  =  ( ( LTrn `  K ) `  W )   &    |-  R  =  ( ( trL `  K ) `  W )   &    |-  E  =  ( ( TEndo `  K ) `  W )   &    |-  I  =  ( ( DIsoB `  K ) `  W )   &    |-  J  =  ( ( DIsoC `  K ) `  W )   &    |-  U  =  ( ( DVecH `  K ) `  W )   &    |-  .+  =  ( +g  `  U )   &    |-  .(+)  =  (
 LSSum `  U )   &    |-  F  =  ( iota_ h  e.  T ( h `  P )  =  Q )   &    |-  G  =  ( iota_ h  e.  T ( h `  P )  =  N )   =>    |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( N  e.  A  /\  -.  N  .<_  W )  /\  ( X  e.  B  /\  X  .<_  W ) ) 
 /\  ( J `  N )  C_  ( ( J `  Q ) 
 .(+)  ( I `  X ) ) )  ->  <. G ,  (  _I  |`  T ) >.  e.  (
 ( J `  Q )  .(+)  ( I `  X ) ) )
 
Theoremcdlemn11c 30666* Part of proof of Lemma N of [Crawley] p. 121 line 37. (Contributed by NM, 27-Feb-2014.)
 |-  B  =  ( Base `  K )   &    |-  .<_  =  ( le `  K )   &    |- 
 .\/  =  ( join `  K )   &    |-  A  =  (
 Atoms `  K )   &    |-  H  =  ( LHyp `  K )   &    |-  P  =  ( ( oc `  K ) `  W )   &    |-  O  =  ( h  e.  T  |->  (  _I  |`  B ) )   &    |-  T  =  ( ( LTrn `  K ) `  W )   &    |-  R  =  ( ( trL `  K ) `  W )   &    |-  E  =  ( ( TEndo `  K ) `  W )   &    |-  I  =  ( ( DIsoB `  K ) `  W )   &    |-  J  =  ( ( DIsoC `  K ) `  W )   &    |-  U  =  ( ( DVecH `  K ) `  W )   &    |-  .+  =  ( +g  `  U )   &    |-  .(+)  =  (
 LSSum `  U )   &    |-  F  =  ( iota_ h  e.  T ( h `  P )  =  Q )   &    |-  G  =  ( iota_ h  e.  T ( h `  P )  =  N )   =>    |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( N  e.  A  /\  -.  N  .<_  W )  /\  ( X  e.  B  /\  X  .<_  W ) ) 
 /\  ( J `  N )  C_  ( ( J `  Q ) 
 .(+)  ( I `  X ) ) )  ->  E. y  e.  ( J `  Q ) E. z  e.  ( I `  X ) <. G ,  (  _I  |`  T ) >.  =  ( y  .+  z ) )
 
Theoremcdlemn11pre 30667* Part of proof of Lemma N of [Crawley] p. 121 line 37. TODO: combine cdlemn11a 30664, cdlemn11b 30665, cdlemn11c 30666, cdlemn11pre into one? (Contributed by NM, 27-Feb-2014.)
 |-  B  =  ( Base `  K )   &    |-  .<_  =  ( le `  K )   &    |- 
 .\/  =  ( join `  K )   &    |-  A  =  (
 Atoms `  K )   &    |-  H  =  ( LHyp `  K )   &    |-  P  =  ( ( oc `  K ) `  W )   &    |-  O  =  ( h  e.  T  |->  (  _I  |`  B ) )   &    |-  T  =  ( ( LTrn `  K ) `  W )   &    |-  R  =  ( ( trL `  K ) `  W )   &    |-  E  =  ( ( TEndo `  K ) `  W )   &    |-  I  =  ( ( DIsoB `  K ) `  W )   &    |-  J  =  ( ( DIsoC `  K ) `  W )   &    |-  U  =  ( ( DVecH `  K ) `  W )   &    |-  .+  =  ( +g  `  U )   &    |-  .(+)  =  (
 LSSum `  U )   &    |-  F  =  ( iota_ h  e.  T ( h `  P )  =  Q )   &    |-  G  =  ( iota_ h  e.  T ( h `  P )  =  N )   =>    |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( N  e.  A  /\  -.  N  .<_  W )  /\  ( X  e.  B  /\  X  .<_  W ) ) 
 /\  ( J `  N )  C_  ( ( J `  Q ) 
 .(+)  ( I `  X ) ) )  ->  N  .<_  ( Q  .\/  X ) )
 
Theoremcdlemn11 30668 Part of proof of Lemma N of [Crawley] p. 121 line 37. (Contributed by NM, 27-Feb-2014.)
 |-  B  =  ( Base `  K )   &    |-  .<_  =  ( le `  K )   &    |- 
 .\/  =  ( join `  K )   &    |-  A  =  (
 Atoms `  K )   &    |-  H  =  ( LHyp `  K )   &    |-  I  =  ( ( DIsoB `  K ) `  W )   &    |-  J  =  ( ( DIsoC `  K ) `  W )   &    |-  U  =  ( ( DVecH `  K ) `  W )   &    |-  .(+)  =  (
 LSSum `  U )   =>    |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( R  e.  A  /\  -.  R  .<_  W )  /\  ( X  e.  B  /\  X  .<_  W ) ) 
 /\  ( J `  R )  C_  ( ( J `  Q ) 
 .(+)  ( I `  X ) ) )  ->  R  .<_  ( Q  .\/  X ) )
 
Theoremcdlemn 30669 Lemma N of [Crawley] p. 121 line 27. (Contributed by NM, 27-Feb-2014.)
 |-  B  =  ( Base `  K )   &    |-  .<_  =  ( le `  K )   &    |- 
 .\/  =  ( join `  K )   &    |-  A  =  (
 Atoms `  K )   &    |-  H  =  ( LHyp `  K )   &    |-  I  =  ( ( DIsoB `  K ) `  W )   &    |-  J  =  ( ( DIsoC `  K ) `  W )   &    |-  U  =  ( ( DVecH `  K ) `  W )   &    |-  .(+)  =  (
 LSSum `  U )   =>    |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( R  e.  A  /\  -.  R  .<_  W )  /\  ( X  e.  B  /\  X  .<_  W ) ) )  ->  ( R  .<_  ( Q  .\/  X ) 
 <->  ( J `  R )  C_  ( ( J `
  Q )  .(+)  ( I `  X ) ) ) )
 
Theoremdihordlem6 30670* Part of proof of Lemma N of [Crawley] p. 122 line 35. (Contributed by NM, 3-Mar-2014.)
 |-  B  =  ( Base `  K )   &    |-  .<_  =  ( le `  K )   &    |-  A  =  ( Atoms `  K )   &    |-  H  =  (
 LHyp `  K )   &    |-  P  =  ( ( oc `  K ) `  W )   &    |-  O  =  ( h  e.  T  |->  (  _I  |`  B ) )   &    |-  T  =  ( ( LTrn `  K ) `  W )   &    |-  E  =  ( ( TEndo `  K ) `  W )   &    |-  U  =  ( ( DVecH `  K ) `  W )   &    |-  .+  =  ( +g  `  U )   &    |-  G  =  ( iota_ h  e.  T ( h `  P )  =  R )   =>    |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( R  e.  A  /\  -.  R  .<_  W ) ) 
 /\  ( s  e.  E  /\  g  e.  T ) )  ->  ( <. ( s `  G ) ,  s >.  .+  <. g ,  O >. )  =  <. ( ( s `  G )  o.  g ) ,  s >. )
 
Theoremdihordlem7 30671* Part of proof of Lemma N of [Crawley] p. 122. Reverse ordering property. (Contributed by NM, 3-Mar-2014.)
 |-  B  =  ( Base `  K )   &    |-  .<_  =  ( le `  K )   &    |-  A  =  ( Atoms `  K )   &    |-  H  =  (
 LHyp `  K )   &    |-  P  =  ( ( oc `  K ) `  W )   &    |-  O  =  ( h  e.  T  |->  (  _I  |`  B ) )   &    |-  T  =  ( ( LTrn `  K ) `  W )   &    |-  E  =  ( ( TEndo `  K ) `  W )   &    |-  U  =  ( ( DVecH `  K ) `  W )   &    |-  .+  =  ( +g  `  U )   &    |-  G  =  ( iota_ h  e.  T ( h `  P )  =  R )   =>    |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( R  e.  A  /\  -.  R  .<_  W ) ) 
 /\  ( s  e.  E  /\  g  e.  T  /\  <. f ,  O >.  =  ( <. ( s `  G ) ,  s >.  .+ 
 <. g ,  O >. ) ) )  ->  (
 f  =  ( ( s `  G )  o.  g )  /\  O  =  s )
 )
 
Theoremdihordlem7b 30672* Part of proof of Lemma N of [Crawley] p. 122. Reverse ordering property. (Contributed by NM, 3-Mar-2014.)
 |-  B  =  ( Base `  K )   &    |-  .<_  =  ( le `  K )   &    |-  A  =  ( Atoms `  K )   &    |-  H  =  (
 LHyp `  K )   &    |-  P  =  ( ( oc `  K ) `  W )   &    |-  O  =  ( h  e.  T  |->  (  _I  |`  B ) )   &    |-  T  =  ( ( LTrn `  K ) `  W )   &    |-  E  =  ( ( TEndo `  K ) `  W )   &    |-  U  =  ( ( DVecH `  K ) `  W )   &    |-  .+  =  ( +g  `  U )   &    |-  G  =  ( iota_ h  e.  T ( h `  P )  =  R )   =>    |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( R  e.  A  /\  -.  R  .<_  W ) ) 
 /\  ( s  e.  E  /\  g  e.  T  /\  <. f ,  O >.  =  ( <. ( s `  G ) ,  s >.  .+ 
 <. g ,  O >. ) ) )  ->  (
 f  =  g  /\  O  =  s )
 )
 
Theoremdihjustlem 30673 Part of proof after Lemma N of [Crawley] p. 122 line 4, "the definition of phi(x) is independent of the atom q." (Contributed by NM, 2-Mar-2014.)
 |-  B  =  ( Base `  K )   &    |-  .<_  =  ( le `  K )   &    |- 
 .\/  =  ( join `  K )   &    |-  ./\  =  ( meet `  K )   &    |-  A  =  ( Atoms `  K )   &    |-  H  =  ( LHyp `  K )   &    |-  I  =  ( ( DIsoB `  K ) `  W )   &    |-  J  =  ( ( DIsoC `  K ) `  W )   &    |-  U  =  ( ( DVecH `  K ) `  W )   &    |-  .(+)  =  (
 LSSum `  U )   =>    |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( R  e.  A  /\  -.  R  .<_  W )  /\  X  e.  B )  /\  ( Q  .\/  ( X  ./\  W ) )  =  ( R  .\/  ( X  ./\  W ) ) )  ->  (
 ( J `  Q )  .(+)  ( I `  ( X  ./\  W ) ) )  C_  (
 ( J `  R )  .(+)  ( I `  ( X  ./\  W ) ) ) )
 
Theoremdihjust 30674 Part of proof after Lemma N of [Crawley] p. 122 line 4, "the definition of phi(x) is independent of the atom q." (Contributed by NM, 2-Mar-2014.)
 |-  B  =  ( Base `  K )   &    |-  .<_  =  ( le `  K )   &    |- 
 .\/  =  ( join `  K )   &    |-  ./\  =  ( meet `  K )   &    |-  A  =  ( Atoms `  K )   &    |-  H  =  ( LHyp `  K )   &    |-  I  =  ( ( DIsoB `  K ) `  W )   &    |-  J  =  ( ( DIsoC `  K ) `  W )   &    |-  U  =  ( ( DVecH `  K ) `  W )   &    |-  .(+)  =  (
 LSSum `  U )   =>    |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( R  e.  A  /\  -.  R  .<_  W )  /\  X  e.  B )  /\  ( Q  .\/  ( X  ./\  W ) )  =  ( R  .\/  ( X  ./\  W ) ) )  ->  (
 ( J `  Q )  .(+)  ( I `  ( X  ./\  W ) ) )  =  ( ( J `  R )  .(+)  ( I `  ( X  ./\  W ) ) ) )
 
Theoremdihord1 30675 Part of proof after Lemma N of [Crawley] p. 122. Forward ordering property. TODO: change  ( Q  .\/  ( X  ./\  W ) )  =  X to  Q  .<_  X using lhpmcvr3 29481, here and all theorems below. (Contributed by NM, 2-Mar-2014.)
 |-  B  =  ( Base `  K )   &    |-  .<_  =  ( le `  K )   &    |- 
 .\/  =  ( join `  K )   &    |-  ./\  =  ( meet `  K )   &    |-  A  =  ( Atoms `  K )   &    |-  H  =  ( LHyp `  K )   &    |-  I  =  ( ( DIsoB `  K ) `  W )   &    |-  J  =  ( ( DIsoC `  K ) `  W )   &    |-  U  =  ( ( DVecH `  K ) `  W )   &    |-  .(+)  =  (
 LSSum `  U )   =>    |-  ( ( ( ( K  e.  HL  /\  W  e.  H ) 
 /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( R  e.  A  /\  -.  R  .<_  W ) ) 
 /\  ( X  e.  B  /\  Y  e.  B )  /\  ( ( Q 
 .\/  ( X  ./\  W ) )  =  X  /\  ( R  .\/  ( Y  ./\  W ) )  =  Y  /\  X  .<_  Y ) )  ->  ( ( J `  Q )  .(+)  ( I `
  ( X  ./\  W ) ) )  C_  ( ( J `  R )  .(+)  ( I `
  ( Y  ./\  W ) ) ) )
 
Theoremdihord2a 30676 Part of proof after Lemma N of [Crawley] p. 122. Reverse ordering property. (Contributed by NM, 3-Mar-2014.)
 |-  B  =  ( Base `  K )   &    |-  .<_  =  ( le `  K )   &    |- 
 .\/  =  ( join `  K )   &    |-  ./\  =  ( meet `  K )   &    |-  A  =  ( Atoms `  K )   &    |-  H  =  ( LHyp `  K )   &    |-  I  =  ( ( DIsoB `  K ) `  W )   &    |-  J  =  ( ( DIsoC `  K ) `  W )   &    |-  U  =  ( ( DVecH `  K ) `  W )   &    |-  .(+)  =  (
 LSSum `  U )   =>    |-  ( ( ( ( K  e.  HL  /\  W  e.  H ) 
 /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( R  e.  A  /\  -.  R  .<_  W ) ) 
 /\  ( X  e.  B  /\  Y  e.  B )  /\  ( ( Q 
 .\/  ( X  ./\  W ) )  =  X  /\  ( R  .\/  ( Y  ./\  W ) )  =  Y  /\  (
 ( J `  Q )  .(+)  ( I `  ( X  ./\  W ) ) )  C_  (
 ( J `  R )  .(+)  ( I `  ( Y  ./\  W ) ) ) ) ) 
 ->  Q  .<_  ( R  .\/  ( Y  ./\  W ) ) )
 
Theoremdihord2b 30677 Part of proof after Lemma N of [Crawley] p. 122. Reverse ordering property. (Contributed by NM, 3-Mar-2014.)
 |-  B  =  ( Base `  K )   &    |-  .<_  =  ( le `  K )   &    |- 
 .\/  =  ( join `  K )   &    |-  ./\  =  ( meet `  K )   &    |-  A  =  ( Atoms `  K )   &    |-  H  =  ( LHyp `  K )   &    |-  I  =  ( ( DIsoB `  K ) `  W )   &    |-  J  =  ( ( DIsoC `  K ) `  W )   &    |-  U  =  ( ( DVecH `  K ) `  W )   &    |-  .(+)  =  (
 LSSum `  U )   =>    |-  ( ( ( ( K  e.  HL  /\  W  e.  H ) 
 /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( R  e.  A  /\  -.  R  .<_  W ) ) 
 /\  ( X  e.  B  /\  Y  e.  B )  /\  ( ( J `
  Q )  .(+)  ( I `  ( X 
 ./\  W ) ) ) 
 C_  ( ( J `
  R )  .(+)  ( I `  ( Y 
 ./\  W ) ) ) )  ->  ( I `  ( X  ./\  W ) )  C_  ( ( J `  R )  .(+)  ( I `  ( Y 
 ./\  W ) ) ) )
 
Theoremdihord2cN 30678* Part of proof after Lemma N of [Crawley] p. 122. Reverse ordering property. TODO: needed? shorten other proof with it? (Contributed by NM, 3-Mar-2014.) (New usage is discouraged.)
 |-  B  =  ( Base `  K )   &    |-  .<_  =  ( le `  K )   &    |- 
 .\/  =  ( join `  K )   &    |-  ./\  =  ( meet `  K )   &    |-  A  =  ( Atoms `  K )   &    |-  H  =  ( LHyp `  K )   &    |-  I  =  ( ( DIsoB `  K ) `  W )   &    |-  J  =  ( ( DIsoC `  K ) `  W )   &    |-  U  =  ( ( DVecH `  K ) `  W )   &    |-  .(+)  =  (
 LSSum `  U )   &    |-  T  =  ( ( LTrn `  K ) `  W )   &    |-  R  =  ( ( trL `  K ) `  W )   &    |-  O  =  ( h  e.  T  |->  (  _I  |`  B )
 )   =>    |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  X  e.  B  /\  ( f  e.  T  /\  ( R `  f )  .<_  ( X  ./\  W )
 ) )  ->  <. f ,  O >.  e.  ( I `  ( X  ./\  W ) ) )
 
Theoremdihord11b 30679* Part of proof after Lemma N of [Crawley] p. 122. Reverse ordering property. (Contributed by NM, 3-Mar-2014.)
 |-  B  =  ( Base `  K )   &    |-  .<_  =  ( le `  K )   &    |- 
 .\/  =  ( join `  K )   &    |-  ./\  =  ( meet `  K )   &    |-  A  =  ( Atoms `  K )   &    |-  H  =  ( LHyp `  K )   &    |-  I  =  ( ( DIsoB `  K ) `  W )   &    |-  J  =  ( ( DIsoC `  K ) `  W )   &    |-  U  =  ( ( DVecH `  K ) `  W )   &    |-  .(+)  =  (
 LSSum `  U )   &    |-  T  =  ( ( LTrn `  K ) `  W )   &    |-  R  =  ( ( trL `  K ) `  W )   &    |-  O  =  ( h  e.  T  |->  (  _I  |`  B )
 )   &    |-  P  =  ( ( oc `  K ) `
  W )   &    |-  E  =  ( ( TEndo `  K ) `  W )   &    |-  .+  =  ( +g  `  U )   &    |-  G  =  ( iota_ h  e.  T ( h `  P )  =  N )   =>    |-  ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( N  e.  A  /\  -.  N  .<_  W ) ) 
 /\  ( X  e.  B  /\  Y  e.  B )  /\  ( ( J `
  Q )  .(+)  ( I `  ( X 
 ./\  W ) ) ) 
 C_  ( ( J `
  N )  .(+)  ( I `  ( Y 
 ./\  W ) ) ) )  /\  ( f  e.  T  /\  ( R `  f )  .<_  ( X  ./\  W )
 ) )  ->  <. f ,  O >.  e.  (
 ( J `  N )  .(+)  ( I `  ( Y  ./\  W ) ) ) )
 
Theoremdihord10 30680* Part of proof after Lemma N of [Crawley] p. 122. Reverse ordering property. (Contributed by NM, 3-Mar-2014.)
 |-  B  =  ( Base `  K )   &    |-  .<_  =  ( le `  K )   &    |- 
 .\/  =  ( join `  K )   &    |-  ./\  =  ( meet `  K )   &    |-  A  =  ( Atoms `  K )   &    |-  H  =  ( LHyp `  K )   &    |-  I  =  ( ( DIsoB `  K ) `  W )   &    |-  J  =  ( ( DIsoC `  K ) `  W )   &    |-  U  =  ( ( DVecH `  K ) `  W )   &    |-  .(+)  =  (
 LSSum `  U )   &    |-  T  =  ( ( LTrn `  K ) `  W )   &    |-  R  =  ( ( trL `  K ) `  W )   &    |-  O  =  ( h  e.  T  |->  (  _I  |`  B )
 )   &    |-  P  =  ( ( oc `  K ) `
  W )   &    |-  E  =  ( ( TEndo `  K ) `  W )   &    |-  .+  =  ( +g  `  U )   &    |-  G  =  ( iota_ h  e.  T ( h `  P )  =  N )   =>    |-  ( ( ( ( K  e.  HL  /\  W  e.  H ) 
 /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( N  e.  A  /\  -.  N  .<_  W ) ) 
 /\  ( f  e.  T  /\  ( R `
  f )  .<_  ( X  ./\  W )
 )  /\  ( (
 s  e.  E  /\  g  e.  T )  /\  ( R `  g
 )  .<_  ( Y  ./\  W )  /\  <. f ,  O >.  =  ( <. ( s `  G ) ,  s >.  .+ 
 <. g ,  O >. ) ) )  ->  ( R `  f )  .<_  ( Y  ./\  W )
 )
 
Theoremdihord11c 30681* Part of proof after Lemma N of [Crawley] p. 122. Reverse ordering property. (Contributed by NM, 3-Mar-2014.)
 |-  B  =  ( Base `  K )   &    |-  .<_  =  ( le `  K )   &    |- 
 .\/  =  ( join `  K )   &    |-  ./\  =  ( meet `  K )   &    |-  A  =  ( Atoms `  K )   &    |-  H  =  ( LHyp `  K )   &    |-  I  =  ( ( DIsoB `  K ) `  W )   &    |-  J  =  ( ( DIsoC `  K ) `  W )   &    |-  U  =  ( ( DVecH `  K ) `  W )   &    |-  .(+)  =  (
 LSSum `  U )   &    |-  T  =  ( ( LTrn `  K ) `  W )   &    |-  R  =  ( ( trL `  K ) `  W )   &    |-  O  =  ( h  e.  T  |->  (  _I  |`  B )
 )   &    |-  P  =  ( ( oc `  K ) `
  W )   &    |-  E  =  ( ( TEndo `  K ) `  W )   &    |-  .+  =  ( +g  `  U )   &    |-  G  =  ( iota_ h  e.  T ( h `  P )  =  N )   =>    |-  ( ( ( ( K  e.  HL  /\  W  e.  H ) 
 /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( N  e.  A  /\  -.  N  .<_  W ) ) 
 /\  ( X  e.  B  /\  Y  e.  B )  /\  ( ( ( J `  Q ) 
 .(+)  ( I `  ( X  ./\  W ) ) )  C_  ( ( J `  N )  .(+)  ( I `  ( Y 
 ./\  W ) ) ) 
 /\  f  e.  T  /\  ( R `  f
 )  .<_  ( X  ./\  W ) ) )  ->  E. y  e.  ( J `  N ) E. z  e.  ( I `  ( Y  ./\  W ) ) <. f ,  O >.  =  ( y  .+  z ) )
 
Theoremdihord2pre 30682* Part of proof after Lemma N of [Crawley] p. 122. Reverse ordering property. (Contributed by NM, 3-Mar-2014.)
 |-  B  =  ( Base `  K )   &    |-  .<_  =  ( le `  K )   &    |- 
 .\/  =  ( join `  K )   &    |-  ./\  =  ( meet `  K )   &    |-  A  =  ( Atoms `  K )   &    |-  H  =  ( LHyp `  K )   &    |-  I  =  ( ( DIsoB `  K ) `  W )   &    |-  J  =  ( ( DIsoC `  K ) `  W )   &    |-  U  =  ( ( DVecH `  K ) `  W )   &    |-  .(+)  =  (
 LSSum `  U )   &    |-  T  =  ( ( LTrn `  K ) `  W )   &    |-  R  =  ( ( trL `  K ) `  W )   &    |-  O  =  ( h  e.  T  |->  (  _I  |`  B )
 )   &    |-  P  =  ( ( oc `  K ) `
  W )   &    |-  E  =  ( ( TEndo `  K ) `  W )   &    |-  .+  =  ( +g  `  U )   &    |-  G  =  ( iota_ h  e.  T ( h `  P )  =  N )   =>    |-  ( ( ( ( K  e.  HL  /\  W  e.  H ) 
 /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( N  e.  A  /\  -.  N  .<_  W ) ) 
 /\  ( X  e.  B  /\  Y  e.  B )  /\  ( ( J `
  Q )  .(+)  ( I `  ( X 
 ./\  W ) ) ) 
 C_  ( ( J `
  N )  .(+)  ( I `  ( Y 
 ./\  W ) ) ) )  ->  ( X  ./\ 
 W )  .<_  ( Y 
 ./\  W ) )
 
Theoremdihord2pre2 30683* Part of proof after Lemma N of [Crawley] p. 122. Reverse ordering property. (Contributed by NM, 4-Mar-2014.)
 |-  B  =  ( Base `  K )   &    |-  .<_  =  ( le `  K )   &    |- 
 .\/  =  ( join `  K )   &    |-  ./\  =  ( meet `  K )   &    |-  A  =  ( Atoms `  K )   &    |-  H  =  ( LHyp `  K )   &    |-  I  =  ( ( DIsoB `  K ) `  W )   &    |-  J  =  ( ( DIsoC `  K ) `  W )   &    |-  U  =  ( ( DVecH `  K ) `  W )   &    |-  .(+)  =  (
 LSSum `  U )   &    |-  T  =  ( ( LTrn `  K ) `  W )   &    |-  R  =  ( ( trL `  K ) `  W )   &    |-  O  =  ( h  e.  T  |->  (  _I  |`  B )
 )   &    |-  P  =  ( ( oc `  K ) `
  W )   &    |-  E  =  ( ( TEndo `  K ) `  W )   &    |-  .+  =  ( +g  `  U )   &    |-  G  =  ( iota_ h  e.  T ( h `  P )  =  N )   =>    |-  ( ( ( ( K  e.  HL  /\  W  e.  H ) 
 /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( N  e.  A  /\  -.  N  .<_  W ) ) 
 /\  ( X  e.  B  /\  Y  e.  B )  /\  ( ( Q 
 .\/  ( X  ./\  W ) )  =  X  /\  ( N  .\/  ( Y  ./\  W ) )  =  Y  /\  (
 ( J `  Q )  .(+)  ( I `  ( X  ./\  W ) ) )  C_  (
 ( J `  N )  .(+)  ( I `  ( Y  ./\  W ) ) ) ) ) 
 ->  ( Q  .\/  ( X  ./\  W ) ) 
 .<_  ( N  .\/  ( Y  ./\  W ) ) )
 
Theoremdihord2 30684 Part of proof after Lemma N of [Crawley] p. 122. Reverse ordering property. Todo: do we need 
-.  X  .<_  W and  -.  Y  .<_  W? (Contributed by NM, 4-Mar-2014.)
 |-  B  =  ( Base `  K )   &    |-  .<_  =  ( le `  K )   &    |- 
 .\/  =  ( join `  K )   &    |-  ./\  =  ( meet `  K )   &    |-  A  =  ( Atoms `  K )   &    |-  H  =  ( LHyp `  K )   &    |-  I  =  ( ( DIsoB `  K ) `  W )   &    |-  J  =  ( ( DIsoC `  K ) `  W )   &    |-  U  =  ( ( DVecH `  K ) `  W )   &    |-  .(+)  =  (
 LSSum `  U )   =>    |-  ( ( ( ( K  e.  HL  /\  W  e.  H ) 
 /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( N  e.  A  /\  -.  N  .<_  W ) ) 
 /\  ( X  e.  B  /\  Y  e.  B )  /\  ( ( Q 
 .\/  ( X  ./\  W ) )  =  X  /\  ( N  .\/  ( Y  ./\  W ) )  =  Y  /\  (
 ( J `  Q )  .(+)  ( I `  ( X  ./\  W ) ) )  C_  (
 ( J `  N )  .(+)  ( I `  ( Y  ./\  W ) ) ) ) ) 
 ->  X  .<_  Y )
 
Syntaxcdih 30685 Extend class notation with isomorphism H.
 class  DIsoH
 
Definitiondf-dih 30686* Define isomorphism H. (Contributed by NM, 28-Jan-2014.)
 |-  DIsoH  =  ( k  e.  _V  |->  ( w  e.  ( LHyp `  k )  |->  ( x  e.  ( Base `  k
 )  |->  if ( x ( le `  k ) w ,  ( ( ( DIsoB `  k ) `  w ) `  x ) ,  ( iota_ u  e.  ( LSubSp `  ( ( DVecH `  k ) `  w ) ) A. q  e.  ( Atoms `  k ) ( ( -.  q ( le `  k ) w  /\  ( q ( join `  k ) ( x ( meet `  k ) w ) )  =  x )  ->  u  =  ( ( ( (
 DIsoC `  k ) `  w ) `  q
 ) ( LSSum `  (
 ( DVecH `  k ) `  w ) ) ( ( ( DIsoB `  k
 ) `  w ) `  ( x ( meet `  k ) w ) ) ) ) ) ) ) ) )
 
Theoremdihffval 30687* The isomorphism H for a lattice  K. Definition of isomorphism map in [Crawley] p. 122 line 3. (Contributed by NM, 28-Jan-2014.)
 |-  B  =  ( Base `  K )   &    |-  .<_  =  ( le `  K )   &    |- 
 .\/  =  ( join `  K )   &    |-  ./\  =  ( meet `  K )   &    |-  A  =  ( Atoms `  K )   &    |-  H  =  ( LHyp `  K )   =>    |-  ( K  e.  V  ->  (
 DIsoH `  K )  =  ( w  e.  H  |->  ( x  e.  B  |->  if ( x  .<_  w ,  ( ( ( DIsoB `  K ) `  w ) `  x ) ,  ( iota_ u  e.  ( LSubSp `
  ( ( DVecH `  K ) `  w ) ) A. q  e.  A  ( ( -.  q  .<_  w  /\  (
 q  .\/  ( x  ./\ 
 w ) )  =  x )  ->  u  =  ( ( ( (
 DIsoC `  K ) `  w ) `  q
 ) ( LSSum `  (
 ( DVecH `  K ) `  w ) ) ( ( ( DIsoB `  K ) `  w ) `  ( x  ./\  w ) ) ) ) ) ) ) ) )
 
Theoremdihfval 30688* Isomorphism H for a lattice  K. Definition of isomorphism map in [Crawley] p. 122 line 3. (Contributed by NM, 28-Jan-2014.)
 |-  B  =  ( Base `  K )   &    |-  .<_  =  ( le `  K )   &    |- 
 .\/  =  ( join `  K )   &    |-  ./\  =  ( meet `  K )   &    |-  A  =  ( Atoms `  K )   &    |-  H  =  ( LHyp `  K )   &    |-  I  =  ( ( DIsoH `  K ) `  W )   &    |-  D  =  ( ( DIsoB `  K ) `  W )   &    |-  C  =  ( ( DIsoC `  K ) `  W )   &    |-  U  =  ( ( DVecH `  K ) `  W )   &    |-  S  =  ( LSubSp `  U )   &    |-  .(+)  =  (
 LSSum `  U )   =>    |-  ( ( K  e.  V  /\  W  e.  H )  ->  I  =  ( x  e.  B  |->  if ( x  .<_  W ,  ( D `  x ) ,  ( iota_ u  e.  S A. q  e.  A  ( ( -.  q  .<_  W  /\  (
 q  .\/  ( x  ./\ 
 W ) )  =  x )  ->  u  =  ( ( C `  q )  .(+)  ( D `
  ( x  ./\  W ) ) ) ) ) ) ) )
 
Theoremdihval 30689* Value of isomorphism H for a lattice  K. Definition of isomorphism map in [Crawley] p. 122 line 3. (Contributed by NM, 3-Feb-2014.)
 |-  B  =  ( Base `  K )   &    |-  .<_  =  ( le `  K )   &    |- 
 .\/  =  ( join `  K )   &    |-  ./\  =  ( meet `  K )   &    |-  A  =  ( Atoms `  K )   &    |-  H  =  ( LHyp `  K )   &    |-  I  =  ( ( DIsoH `  K ) `  W )   &    |-  D  =  ( ( DIsoB `  K ) `  W )   &    |-  C  =  ( ( DIsoC `  K ) `  W )   &    |-  U  =  ( ( DVecH `  K ) `  W )   &    |-  S  =  ( LSubSp `  U )   &    |-  .(+)  =  (
 LSSum `  U )   =>    |-  ( ( ( K  e.  V  /\  W  e.  H )  /\  X  e.  B ) 
 ->  ( I `  X )  =  if ( X  .<_  W ,  ( D `  X ) ,  ( iota_ u  e.  S A. q  e.  A  ( ( -.  q  .<_  W  /\  ( q 
 .\/  ( X  ./\  W ) )  =  X )  ->  u  =  ( ( C `  q
 )  .(+)  ( D `  ( X  ./\  W ) ) ) ) ) ) )
 
Theoremdihvalc 30690* Value of isomorphism H for a lattice  K when  -.  X  .<_  W. (Contributed by NM, 4-Mar-2014.)
 |-  B  =  ( Base `  K )   &    |-  .<_  =  ( le `  K )   &    |- 
 .\/  =  ( join `  K )   &    |-  ./\  =  ( meet `  K )   &    |-  A  =  ( Atoms `  K )   &    |-  H  =  ( LHyp `  K )   &    |-  I  =  ( ( DIsoH `  K ) `  W )   &    |-  D  =  ( ( DIsoB `  K ) `  W )   &    |-  C  =  ( ( DIsoC `  K ) `  W )   &    |-  U  =  ( ( DVecH `  K ) `  W )   &    |-  S  =  ( LSubSp `  U )   &    |-  .(+)  =  (
 LSSum `  U )   =>    |-  ( ( ( K  e.  V  /\  W  e.  H )  /\  ( X  e.  B  /\  -.  X  .<_  W ) )  ->  ( I `  X )  =  (
 iota_ u  e.  S A. q  e.  A  ( ( -.  q  .<_  W  /\  ( q 
 .\/  ( X  ./\  W ) )  =  X )  ->  u  =  ( ( C `  q
 )  .(+)  ( D `  ( X  ./\  W ) ) ) ) ) )
 
Theoremdihlsscpre 30691 Closure of isomorphism H for a lattice  K when  -.  X  .<_  W. (Contributed by NM, 6-Mar-2014.)
 |-  B  =  ( Base `  K )   &    |-  .<_  =  ( le `  K )   &    |- 
 .\/  =  ( join `  K )   &    |-  ./\  =  ( meet `  K )   &    |-  A  =  ( Atoms `  K )   &    |-  H  =  ( LHyp `  K )   &    |-  I  =  ( ( DIsoH `  K ) `  W )   &    |-  D  =  ( ( DIsoB `  K ) `  W )   &    |-  C  =  ( ( DIsoC `  K ) `  W )   &    |-  U  =  ( ( DVecH `  K ) `  W )   &    |-  S  =  ( LSubSp `  U )   &    |-  .(+)  =  (
 LSSum `  U )   =>    |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( X  e.  B  /\  -.  X  .<_  W ) )  ->  ( I `  X )  e.  S )
 
Theoremdihvalcqpre 30692 Value of isomorphism H for a lattice  K when  -.  X  .<_  W, given auxiliary atom  Q. (Contributed by NM, 6-Mar-2014.)
 |-  B  =  ( Base `  K )   &    |-  .<_  =  ( le `  K )   &    |- 
 .\/  =  ( join `  K )   &    |-  ./\  =  ( meet `  K )   &    |-  A  =  ( Atoms `  K )   &    |-  H  =  ( LHyp `  K )   &    |-  I  =  ( ( DIsoH `  K ) `  W )   &    |-  D  =  ( ( DIsoB `  K ) `  W )   &    |-  C  =  ( ( DIsoC `  K ) `  W )   &    |-  U  =  ( ( DVecH `  K ) `  W )   &    |-  S  =  ( LSubSp `  U )   &    |-  .(+)  =  (
 LSSum `  U )   =>    |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( X  e.  B  /\  -.  X  .<_  W ) 
 /\  ( ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( Q  .\/  ( X 
 ./\  W ) )  =  X ) )  ->  ( I `  X )  =  ( ( C `
  Q )  .(+)  ( D `  ( X 
 ./\  W ) ) ) )
 
Theoremdihvalcq 30693 Value of isomorphism H for a lattice  K when  -.  X  .<_  W, given auxiliary atom  Q. TODO: Use dihvalcq2 30704 (with lhpmcvr3 29481 for  ( Q  .\/  ( X  ./\  W ) )  =  X simplification) that changes  C and  D to  I and make this obsolete. Do to other theorems as well. (Contributed by NM, 6-Mar-2014.)
 |-  B  =  ( Base `  K )   &    |-  .<_  =  ( le `  K )   &    |- 
 .\/  =  ( join `  K )   &    |-  ./\  =  ( meet `  K )   &    |-  A  =  ( Atoms `  K )   &    |-  H  =  ( LHyp `  K )   &    |-  I  =  ( ( DIsoH `  K ) `  W )   &    |-  D  =  ( ( DIsoB `  K ) `  W )   &    |-  C  =  ( ( DIsoC `  K ) `  W )   &    |-  U  =  ( ( DVecH `  K ) `  W )   &    |-  .(+)  =  (
 LSSum `  U )   =>    |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( X  e.  B  /\  -.  X  .<_  W ) 
 /\  ( ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( Q  .\/  ( X 
 ./\  W ) )  =  X ) )  ->  ( I `  X )  =  ( ( C `
  Q )  .(+)  ( D `  ( X 
 ./\  W ) ) ) )
 
Theoremdihvalb 30694 Value of isomorphism H for a lattice  K when  X  .<_  W. (Contributed by NM, 4-Mar-2014.)
 |-  B  =  ( Base `  K )   &    |-  .<_  =  ( le `  K )   &    |-  H  =  ( LHyp `  K )   &    |-  I  =  ( ( DIsoH `  K ) `  W )   &    |-  D  =  ( ( DIsoB `  K ) `  W )   =>    |-  ( ( ( K  e.  V  /\  W  e.  H )  /\  ( X  e.  B  /\  X  .<_  W ) ) 
 ->  ( I `  X )  =  ( D `  X ) )
 
TheoremdihopelvalbN 30695* Ordered pair member of the partial isomorphism H for argument under  W. (Contributed by NM, 21-Mar-2014.) (New usage is discouraged.)
 |-  B  =  ( Base `  K )   &    |-  .<_  =  ( le `  K )   &    |-  H  =  ( LHyp `  K )   &    |-  T  =  ( ( LTrn `  K ) `  W )   &    |-  R  =  ( ( trL `  K ) `  W )   &    |-  O  =  ( g  e.  T  |->  (  _I  |`  B )
 )   &    |-  I  =  ( (
 DIsoH `  K ) `  W )   =>    |-  ( ( ( K  e.  V  /\  W  e.  H )  /\  ( X  e.  B  /\  X  .<_  W ) ) 
 ->  ( <. F ,  S >.  e.  ( I `  X )  <->  ( ( F  e.  T  /\  ( R `  F )  .<_  X )  /\  S  =  O ) ) )
 
Theoremdihvalcqat 30696 Value of isomorphism H for a lattice  K at an atom not under  W. (Contributed by NM, 27-Mar-2014.)
 |-  .<_  =  ( le `  K )   &    |-  A  =  ( Atoms `  K )   &    |-  H  =  (
 LHyp `  K )   &    |-  J  =  ( ( DIsoC `  K ) `  W )   &    |-  I  =  ( ( DIsoH `  K ) `  W )   =>    |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  ->  ( I `  Q )  =  ( J `  Q ) )
 
Theoremdih1dimb 30697* Two expressions for a 1-dimensional subspace of vector space H (when  F is a nonzero vector i.e. non-identity translation). (Contributed by NM, 27-Apr-2014.)
 |-  B  =  ( Base `  K )   &    |-  H  =  ( LHyp `  K )   &    |-  T  =  ( ( LTrn `  K ) `  W )   &    |-  R  =  ( ( trL `  K ) `  W )   &    |-  O  =  ( h  e.  T  |->  (  _I  |`  B )
 )   &    |-  U  =  ( (
 DVecH `  K ) `  W )   &    |-  I  =  ( ( DIsoH `  K ) `  W )   &    |-  N  =  (
 LSpan `  U )   =>    |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T ) 
 ->  ( I `  ( R `  F ) )  =  ( N `  { <. F ,  O >. } ) )
 
Theoremdih1dimb2 30698* Isomorphism H at an atom under  W. (Contributed by NM, 27-Apr-2014.)
 |-  B  =  ( Base `  K )   &    |-  .<_  =  ( le `  K )   &    |-  A  =  ( Atoms `  K )   &    |-  H  =  (
 LHyp `  K )   &    |-  T  =  ( ( LTrn `  K ) `  W )   &    |-  O  =  ( h  e.  T  |->  (  _I  |`  B )
 )   &    |-  U  =  ( (
 DVecH `  K ) `  W )   &    |-  I  =  ( ( DIsoH `  K ) `  W )   &    |-  N  =  (
 LSpan `  U )   =>    |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( Q  e.  A  /\  Q  .<_  W ) ) 
 ->  E. f  e.  T  ( f  =/=  (  _I  |`  B )  /\  ( I `  Q )  =  ( N `  { <. f ,  O >. } ) ) )
 
Theoremdih1dimc 30699* Isomorphism H at an atom not under 
W. (Contributed by NM, 27-Apr-2014.)
 |-  .<_  =  ( le `  K )   &    |-  A  =  ( Atoms `  K )   &    |-  H  =  (
 LHyp `  K )   &    |-  P  =  ( ( oc `  K ) `  W )   &    |-  T  =  ( (
 LTrn `  K ) `  W )   &    |-  I  =  ( ( DIsoH `  K ) `  W )   &    |-  U  =  ( ( DVecH `  K ) `  W )   &    |-  N  =  (
 LSpan `  U )   &    |-  F  =  ( iota_ f  e.  T ( f `  P )  =  Q )   =>    |-  (
 ( ( K  e.  HL  /\  W  e.  H )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  ->  ( I `  Q )  =  ( N `  { <. F ,  (  _I  |`  T )
 >. } ) )
 
Theoremdib2dim 30700 Extend dia2dim 30534 to partial isomorphism B. (Contributed by NM, 22-Sep-2014.)
 |-  .<_  =  ( le `  K )   &    |- 
 .\/  =  ( join `  K )   &    |-  A  =  (
 Atoms `  K )   &    |-  H  =  ( LHyp `  K )   &    |-  U  =  ( ( DVecH `  K ) `  W )   &    |-  .(+)  =  (
 LSSum `  U )   &    |-  I  =  ( ( DIsoB `  K ) `  W )   &    |-  ( ph  ->  ( K  e.  HL  /\  W  e.  H ) )   &    |-  ( ph  ->  ( P  e.  A  /\  P  .<_  W ) )   &    |-  ( ph  ->  ( Q  e.  A  /\  Q  .<_  W ) )   =>    |-  ( ph  ->  ( I `  ( P  .\/  Q ) )  C_  (
 ( I `  P )  .(+)  ( I `  Q ) ) )
    < Previous  Next >

Page List
Jump to page: Contents  1 1-100 2 101-200 3 201-300 4 301-400 5 401-500 6 501-600 7 601-700 8 701-800 9 801-900 10 901-1000 11 1001-1100 12 1101-1200 13 1201-1300 14 1301-1400 15 1401-1500 16 1501-1600 17 1601-1700 18 1701-1800 19 1801-1900 20 1901-2000 21 2001-2100 22 2101-2200 23 2201-2300 24 2301-2400 25 2401-2500 26 2501-2600 27 2601-2700 28 2701-2800 29 2801-2900 30 2901-3000 31 3001-3100 32 3101-3200 33 3201-3300 34 3301-3400 35 3401-3500 36 3501-3600 37 3601-3700 38 3701-3800 39 3801-3900 40 3901-4000 41 4001-4100 42 4101-4200 43 4201-4300 44 4301-4400 45 4401-4500 46 4501-4600 47 4601-4700 48 4701-4800 49 4801-4900 50 4901-5000 51 5001-5100 52 5101-5200 53 5201-5300 54 5301-5400 55 5401-5500 56 5501-5600 57 5601-5700 58 5701-5800 59 5801-5900 60 5901-6000 61 6001-6100 62 6101-6200 63 6201-6300 64 6301-6400 65 6401-6500 66 6501-6600 67 6601-6700 68 6701-6800 69 6801-6900 70 6901-7000 71 7001-7100 72 7101-7200 73 7201-7300 74 7301-7400 75 7401-7500 76 7501-7600 77 7601-7700 78 7701-7800 79 7801-7900 80 7901-8000 81 8001-8100 82 8101-8200 83 8201-8300 84 8301-8400 85 8401-8500 86 8501-8600 87 8601-8700 88 8701-8800 89 8801-8900 90 8901-9000 91 9001-9100 92 9101-9200 93 9201-9300 94 9301-9400 95 9401-9500 96 9501-9600 97 9601-9700 98 9701-9800 99 9801-9900 100 9901-10000 101 10001-10100 102 10101-10200 103 10201-10300 104 10301-10400 105 10401-10500 106 10501-10600 107 10601-10700 108 10701-10800 109 10801-10900 110 10901-11000 111 11001-11100 112 11101-11200 113 11201-11300 114 11301-11400 115 11401-11500 116 11501-11600 117 11601-11700 118 11701-11800 119 11801-11900 120 11901-12000 121 12001-12100 122 12101-12200 123 12201-12300 124 12301-12400 125 12401-12500 126 12501-12600 127 12601-12700 128 12701-12800 129 12801-12900 130 12901-13000 131 13001-13100 132 13101-13200 133 13201-13300 134 13301-13400 135 13401-13500 136 13501-13600 137 13601-13700 138 13701-13800 139 13801-13900 140 13901-14000 141 14001-14100 142 14101-14200 143 14201-14300 144 14301-14400 145 14401-14500 146 14501-14600 147 14601-14700 148 14701-14800 149 14801-14900 150 14901-15000 151 15001-15100 152 15101-15200 153 15201-15300 154 15301-15400 155 15401-15500 156 15501-15600 157 15601-15700 158 15701-15800 159 15801-15900 160 15901-16000 161 16001-16100 162 16101-16200 163 16201-16300 164 16301-16400 165 16401-16500 166 16501-16600 167 16601-16700 168 16701-16800 169 16801-16900 170 16901-17000 171 17001-17100 172 17101-17200 173 17201-17300 174 17301-17400 175 17401-17500 176 17501-17600 177 17601-17700 178 17701-17800 179 17801-17900 180 17901-18000 181 18001-18100 182 18101-18200 183 18201-18300 184 18301-18400 185 18401-18500 186 18501-18600 187 18601-18700 188 18701-18800 189 18801-18900 190 18901-19000 191 19001-19100 192 19101-19200 193 19201-19300 194 19301-19400 195 19401-19500 196 19501-19600 197 19601-19700 198 19701-19800 199 19801-19900 200 19901-20000 201 20001-20100 202 20101-20200 203 20201-20300 204 20301-20400 205 20401-20500 206 20501-20600 207 20601-20700 208 20701-20800 209 20801-20900 210 20901-21000 211 21001-21100 212 21101-21200 213 21201-21300 214 21301-21400 215 21401-21500 216 21501-21600 217 21601-21700 218 21701-21800 219 21801-21900 220 21901-22000 221 22001-22100 222 22101-22200 223 22201-22300 224 22301-22400 225 22401-22500 226 22501-22600 227 22601-22700 228 22701-22800 229 22801-22900 230 22901-23000 231 23001-23100 232 23101-23200 233 23201-23300 234 23301-23400 235 23401-23500 236 23501-23600 237 23601-23700 238 23701-23800 239 23801-23900 240 23901-24000 241 24001-24100 242 24101-24200 243 24201-24300 244 24301-24400 245 24401-24500 246 24501-24600 247 24601-24700 248 24701-24800 249 24801-24900 250 24901-25000 251 25001-25100 252 25101-25200 253 25201-25300 254 25301-25400 255 25401-25500 256 25501-25600 257 25601-25700 258 25701-25800 259 25801-25900 260 25901-26000 261 26001-26100 262 26101-26200 263 26201-26300 264 26301-26400 265 26401-26500 266 26501-26600 267 26601-26700 268 26701-26800 269 26801-26900 270 26901-27000 271 27001-27100 272 27101-27200 273 27201-27300 274 27301-27400 275 27401-27500 276 27501-27600 277 27601-27700 278 27701-27800 279 27801-27900 280 27901-28000 281 28001-28100 282 28101-28200 283 28201-28