HomeHome Metamath Proof Explorer
Theorem List (p. 298 of 314)
< Previous  Next >
Browser slow? Try the
Unicode version.

Mirrors  >  Metamath Home Page  >  MPE Home Page  >  Theorem List Contents  >  Recent Proofs       This page: Page List

Color key:    Metamath Proof Explorer  Metamath Proof Explorer
(1-21444)
  Hilbert Space Explorer  Hilbert Space Explorer
(21445-22967)
  Users' Mathboxes  Users' Mathboxes
(22968-31305)
 

Theorem List for Metamath Proof Explorer - 29701-29800   *Has distinct variable group(s)
TypeLabelDescription
Statement
 
Theoremcdleme26eALTN 29701* Part of proof of Lemma E in [Crawley] p. 113, 3rd paragraph, 4th line on p. 115.  F,  N,  O represent f(z), fz(s), fz(t) respectively. When t  \/ v = p  \/ q, fz(s)  <_ fz(t)  \/ v. TODO: FIX COMMENT. (Contributed by NM, 1-Feb-2013.) (New usage is discouraged.)
 |-  B  =  ( Base `  K )   &    |-  .<_  =  ( le `  K )   &    |- 
 .\/  =  ( join `  K )   &    |-  ./\  =  ( meet `  K )   &    |-  A  =  ( Atoms `  K )   &    |-  H  =  ( LHyp `  K )   &    |-  U  =  ( ( P  .\/  Q )  ./\  W )   &    |-  F  =  ( ( y  .\/  U )  ./\  ( Q  .\/  ( ( P  .\/  y )  ./\  W ) ) )   &    |-  G  =  ( ( z  .\/  U )  ./\  ( Q  .\/  ( ( P  .\/  z )  ./\  W ) ) )   &    |-  N  =  ( ( P  .\/  Q )  ./\  ( F  .\/  ( ( S  .\/  y )  ./\  W ) ) )   &    |-  O  =  ( ( P  .\/  Q )  ./\  ( G  .\/  ( ( T  .\/  z )  ./\  W ) ) )   &    |-  I  =  (
 iota_ u  e.  B A. y  e.  A  ( ( -.  y  .<_  W  /\  -.  y  .<_  ( P  .\/  Q ) )  ->  u  =  N ) )   &    |-  E  =  ( iota_ u  e.  B A. z  e.  A  ( ( -.  z  .<_  W  /\  -.  z  .<_  ( P  .\/  Q ) )  ->  u  =  O ) )   =>    |-  ( ( ( ( K  e.  HL  /\  W  e.  H ) 
 /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) ) 
 /\  ( P  =/=  Q 
 /\  ( S  e.  A  /\  -.  S  .<_  W 
 /\  S  .<_  ( P 
 .\/  Q ) )  /\  ( T  e.  A  /\  -.  T  .<_  W  /\  T  .<_  ( P  .\/  Q ) ) )  /\  ( ( V  e.  A  /\  V  .<_  W  /\  ( T  .\/  V )  =  ( P  .\/  Q ) )  /\  (
 y  e.  A  /\  -.  y  .<_  W  /\  -.  y  .<_  ( P  .\/  Q ) )  /\  (
 z  e.  A  /\  -.  z  .<_  W  /\  -.  z  .<_  ( P  .\/  Q ) ) ) ) 
 ->  I  .<_  ( E 
 .\/  V ) )
 
Theoremcdleme26fALTN 29702* Part of proof of Lemma E in [Crawley] p. 113, 3rd paragraph, 6th and 7th lines on p. 115.  F,  N represent f(t), ft(s) respectively. If t  <_ t  \/ v, then ft(s)  <_ f(t)  \/ v. TODO: FIX COMMENT. (Contributed by NM, 1-Feb-2013.) (New usage is discouraged.)
 |-  B  =  ( Base `  K )   &    |-  .<_  =  ( le `  K )   &    |- 
 .\/  =  ( join `  K )   &    |-  ./\  =  ( meet `  K )   &    |-  A  =  ( Atoms `  K )   &    |-  H  =  ( LHyp `  K )   &    |-  U  =  ( ( P  .\/  Q )  ./\  W )   &    |-  F  =  ( ( t  .\/  U )  ./\  ( Q  .\/  ( ( P  .\/  t )  ./\  W ) ) )   &    |-  N  =  ( ( P  .\/  Q )  ./\  ( F  .\/  ( ( S  .\/  t )  ./\  W ) ) )   &    |-  I  =  (
 iota_ u  e.  B A. t  e.  A  ( ( -.  t  .<_  W  /\  -.  t  .<_  ( P  .\/  Q ) )  ->  u  =  N ) )   =>    |-  ( ( ( ( K  e.  HL  /\  W  e.  H ) 
 /\  ( P  =/=  Q 
 /\  S  .<_  ( P 
 .\/  Q ) )  /\  ( t  e.  A  /\  -.  t  .<_  W ) )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) 
 /\  ( S  e.  A  /\  -.  S  .<_  W ) )  /\  (
 ( -.  t  .<_  W 
 /\  -.  t  .<_  ( P  .\/  Q )
 )  /\  ( S  =/=  t  /\  S  .<_  ( t  .\/  V )
 )  /\  ( V  e.  A  /\  V  .<_  W ) ) )  ->  I  .<_  ( F  .\/  V ) )
 
Theoremcdleme26f 29703* Part of proof of Lemma E in [Crawley] p. 113, 3rd paragraph, 6th and 7th lines on p. 115.  F,  N represent f(t), ft(s) respectively. If t  <_ t  \/ v, then ft(s)  <_ f(t)  \/ v. TODO: FIX COMMENT. (Contributed by NM, 1-Feb-2013.)
 |-  B  =  ( Base `  K )   &    |-  .<_  =  ( le `  K )   &    |- 
 .\/  =  ( join `  K )   &    |-  ./\  =  ( meet `  K )   &    |-  A  =  ( Atoms `  K )   &    |-  H  =  ( LHyp `  K )   &    |-  U  =  ( ( P  .\/  Q )  ./\  W )   &    |-  F  =  ( ( t  .\/  U )  ./\  ( Q  .\/  ( ( P  .\/  t )  ./\  W ) ) )   &    |-  N  =  ( ( P  .\/  Q )  ./\  ( F  .\/  ( ( S  .\/  t )  ./\  W ) ) )   &    |-  I  =  (
 iota_ u  e.  B A. t  e.  A  ( ( -.  t  .<_  W  /\  -.  t  .<_  ( P  .\/  Q ) )  ->  u  =  N ) )   =>    |-  ( ( ( ( K  e.  HL  /\  W  e.  H ) 
 /\  ( P  =/=  Q 
 /\  S  .<_  ( P 
 .\/  Q ) )  /\  ( t  e.  A  /\  -.  t  .<_  W ) )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) 
 /\  ( S  e.  A  /\  -.  S  .<_  W ) )  /\  ( -.  t  .<_  ( P 
 .\/  Q )  /\  ( S  =/=  t  /\  S  .<_  ( t  .\/  V ) )  /\  ( V  e.  A  /\  V  .<_  W ) ) ) 
 ->  I  .<_  ( F 
 .\/  V ) )
 
Theoremcdleme26f2ALTN 29704* Part of proof of Lemma E in [Crawley] p. 113. cdleme26fALTN 29702 with s and t swapped (this case is not mentioned by them). If s  <_ t  \/ v, then f(s)  <_ fs(t)  \/ v. TODO: FIX COMMENT. (Contributed by NM, 1-Feb-2013.) (New usage is discouraged.)
 |-  B  =  ( Base `  K )   &    |-  .<_  =  ( le `  K )   &    |- 
 .\/  =  ( join `  K )   &    |-  ./\  =  ( meet `  K )   &    |-  A  =  ( Atoms `  K )   &    |-  H  =  ( LHyp `  K )   &    |-  U  =  ( ( P  .\/  Q )  ./\  W )   &    |-  G  =  ( ( s  .\/  U )  ./\  ( Q  .\/  ( ( P  .\/  s )  ./\  W ) ) )   &    |-  O  =  ( ( P  .\/  Q )  ./\  ( G  .\/  ( ( T  .\/  s )  ./\  W ) ) )   &    |-  E  =  (
 iota_ u  e.  B A. s  e.  A  ( ( -.  s  .<_  W  /\  -.  s  .<_  ( P  .\/  Q ) )  ->  u  =  O ) )   =>    |-  ( ( ( ( K  e.  HL  /\  W  e.  H ) 
 /\  ( P  =/=  Q 
 /\  T  .<_  ( P 
 .\/  Q ) )  /\  ( s  e.  A  /\  -.  s  .<_  W ) )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) 
 /\  ( T  e.  A  /\  -.  T  .<_  W ) )  /\  (
 ( -.  s  .<_  W 
 /\  -.  s  .<_  ( P  .\/  Q )
 )  /\  ( s  =/=  T  /\  s  .<_  ( T  .\/  V )
 )  /\  ( V  e.  A  /\  V  .<_  W ) ) )  ->  G  .<_  ( E  .\/  V ) )
 
Theoremcdleme26f2 29705* Part of proof of Lemma E in [Crawley] p. 113. cdleme26fALTN 29702 with s and t swapped (this case is not mentioned by them). If s  <_ t  \/ v, then f(s)  <_ fs(t)  \/ v. TODO: FIX COMMENT. (Contributed by NM, 1-Feb-2013.)
 |-  B  =  ( Base `  K )   &    |-  .<_  =  ( le `  K )   &    |- 
 .\/  =  ( join `  K )   &    |-  ./\  =  ( meet `  K )   &    |-  A  =  ( Atoms `  K )   &    |-  H  =  ( LHyp `  K )   &    |-  U  =  ( ( P  .\/  Q )  ./\  W )   &    |-  G  =  ( ( s  .\/  U )  ./\  ( Q  .\/  ( ( P  .\/  s )  ./\  W ) ) )   &    |-  O  =  ( ( P  .\/  Q )  ./\  ( G  .\/  ( ( T  .\/  s )  ./\  W ) ) )   &    |-  E  =  (
 iota_ u  e.  B A. s  e.  A  ( ( -.  s  .<_  W  /\  -.  s  .<_  ( P  .\/  Q ) )  ->  u  =  O ) )   =>    |-  ( ( ( ( K  e.  HL  /\  W  e.  H ) 
 /\  ( P  =/=  Q 
 /\  T  .<_  ( P 
 .\/  Q ) )  /\  ( s  e.  A  /\  -.  s  .<_  W ) )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) 
 /\  ( T  e.  A  /\  -.  T  .<_  W ) )  /\  ( -.  s  .<_  ( P 
 .\/  Q )  /\  (
 s  =/=  T  /\  s  .<_  ( T  .\/  V ) )  /\  ( V  e.  A  /\  V  .<_  W ) ) )  ->  G  .<_  ( E  .\/  V )
 )
 
Theoremcdleme27cl 29706* Part of proof of Lemma E in [Crawley] p. 113. Closure of  C. (Contributed by NM, 6-Feb-2013.)
 |-  B  =  ( Base `  K )   &    |-  .<_  =  ( le `  K )   &    |- 
 .\/  =  ( join `  K )   &    |-  ./\  =  ( meet `  K )   &    |-  A  =  ( Atoms `  K )   &    |-  H  =  ( LHyp `  K )   &    |-  U  =  ( ( P  .\/  Q )  ./\  W )   &    |-  F  =  ( ( s  .\/  U )  ./\  ( Q  .\/  ( ( P  .\/  s )  ./\  W ) ) )   &    |-  Z  =  ( ( z  .\/  U )  ./\  ( Q  .\/  ( ( P  .\/  z )  ./\  W ) ) )   &    |-  N  =  ( ( P  .\/  Q )  ./\  ( Z  .\/  ( ( s  .\/  z )  ./\  W ) ) )   &    |-  D  =  (
 iota_ u  e.  B A. z  e.  A  ( ( -.  z  .<_  W  /\  -.  z  .<_  ( P  .\/  Q ) )  ->  u  =  N ) )   &    |-  C  =  if ( s  .<_  ( P  .\/  Q ) ,  D ,  F )   =>    |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  (
 ( P  e.  A  /\  -.  P  .<_  W ) 
 /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  (
 ( s  e.  A  /\  -.  s  .<_  W ) 
 /\  P  =/=  Q ) )  ->  C  e.  B )
 
Theoremcdleme27a 29707* Part of proof of Lemma E in [Crawley] p. 113. cdleme26f 29703 with s and t swapped (this case is not mentioned by them). If s  <_ t  \/ v, then f(s)  <_ fs(t)  \/ v. TODO: FIX COMMENT. (Contributed by NM, 3-Feb-2013.)
 |-  B  =  ( Base `  K )   &    |-  .<_  =  ( le `  K )   &    |- 
 .\/  =  ( join `  K )   &    |-  ./\  =  ( meet `  K )   &    |-  A  =  ( Atoms `  K )   &    |-  H  =  ( LHyp `  K )   &    |-  U  =  ( ( P  .\/  Q )  ./\  W )   &    |-  F  =  ( ( s  .\/  U )  ./\  ( Q  .\/  ( ( P  .\/  s )  ./\  W ) ) )   &    |-  Z  =  ( ( z  .\/  U )  ./\  ( Q  .\/  ( ( P  .\/  z )  ./\  W ) ) )   &    |-  N  =  ( ( P  .\/  Q )  ./\  ( Z  .\/  ( ( s  .\/  z )  ./\  W ) ) )   &    |-  D  =  (
 iota_ u  e.  B A. z  e.  A  ( ( -.  z  .<_  W  /\  -.  z  .<_  ( P  .\/  Q ) )  ->  u  =  N ) )   &    |-  C  =  if ( s  .<_  ( P  .\/  Q ) ,  D ,  F )   &    |-  G  =  ( (
 t  .\/  U )  ./\  ( Q  .\/  (
 ( P  .\/  t
 )  ./\  W ) ) )   &    |-  O  =  ( ( P  .\/  Q )  ./\  ( Z  .\/  ( ( t  .\/  z )  ./\  W ) ) )   &    |-  E  =  (
 iota_ u  e.  B A. z  e.  A  ( ( -.  z  .<_  W  /\  -.  z  .<_  ( P  .\/  Q ) )  ->  u  =  O ) )   &    |-  Y  =  if ( t  .<_  ( P  .\/  Q ) ,  E ,  G )   =>    |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  P  =/=  Q  /\  ( s  e.  A  /\  -.  s  .<_  W ) )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) 
 /\  ( t  e.  A  /\  -.  t  .<_  W ) )  /\  ( ( s  =/=  t  /\  s  .<_  ( t  .\/  V )
 )  /\  ( V  e.  A  /\  V  .<_  W ) ) )  ->  C  .<_  ( Y  .\/  V ) )
 
Theoremcdleme27b 29708* Lemma for cdleme27N 29709. (Contributed by NM, 3-Feb-2013.)
 |-  B  =  ( Base `  K )   &    |-  .<_  =  ( le `  K )   &    |- 
 .\/  =  ( join `  K )   &    |-  ./\  =  ( meet `  K )   &    |-  A  =  ( Atoms `  K )   &    |-  H  =  ( LHyp `  K )   &    |-  U  =  ( ( P  .\/  Q )  ./\  W )   &    |-  F  =  ( ( s  .\/  U )  ./\  ( Q  .\/  ( ( P  .\/  s )  ./\  W ) ) )   &    |-  Z  =  ( ( z  .\/  U )  ./\  ( Q  .\/  ( ( P  .\/  z )  ./\  W ) ) )   &    |-  N  =  ( ( P  .\/  Q )  ./\  ( Z  .\/  ( ( s  .\/  z )  ./\  W ) ) )   &    |-  D  =  (
 iota_ u  e.  B A. z  e.  A  ( ( -.  z  .<_  W  /\  -.  z  .<_  ( P  .\/  Q ) )  ->  u  =  N ) )   &    |-  C  =  if ( s  .<_  ( P  .\/  Q ) ,  D ,  F )   &    |-  G  =  ( (
 t  .\/  U )  ./\  ( Q  .\/  (
 ( P  .\/  t
 )  ./\  W ) ) )   &    |-  O  =  ( ( P  .\/  Q )  ./\  ( Z  .\/  ( ( t  .\/  z )  ./\  W ) ) )   &    |-  E  =  (
 iota_ u  e.  B A. z  e.  A  ( ( -.  z  .<_  W  /\  -.  z  .<_  ( P  .\/  Q ) )  ->  u  =  O ) )   &    |-  Y  =  if ( t  .<_  ( P  .\/  Q ) ,  E ,  G )   =>    |-  ( s  =  t  ->  C  =  Y )
 
Theoremcdleme27N 29709* Part of proof of Lemma E in [Crawley] p. 113. Eliminate the  s  =/=  t antecedent in cdleme27a 29707. (Contributed by NM, 3-Feb-2013.) (New usage is discouraged.)
 |-  B  =  ( Base `  K )   &    |-  .<_  =  ( le `  K )   &    |- 
 .\/  =  ( join `  K )   &    |-  ./\  =  ( meet `  K )   &    |-  A  =  ( Atoms `  K )   &    |-  H  =  ( LHyp `  K )   &    |-  U  =  ( ( P  .\/  Q )  ./\  W )   &    |-  F  =  ( ( s  .\/  U )  ./\  ( Q  .\/  ( ( P  .\/  s )  ./\  W ) ) )   &    |-  Z  =  ( ( z  .\/  U )  ./\  ( Q  .\/  ( ( P  .\/  z )  ./\  W ) ) )   &    |-  N  =  ( ( P  .\/  Q )  ./\  ( Z  .\/  ( ( s  .\/  z )  ./\  W ) ) )   &    |-  D  =  (
 iota_ u  e.  B A. z  e.  A  ( ( -.  z  .<_  W  /\  -.  z  .<_  ( P  .\/  Q ) )  ->  u  =  N ) )   &    |-  C  =  if ( s  .<_  ( P  .\/  Q ) ,  D ,  F )   &    |-  G  =  ( (
 t  .\/  U )  ./\  ( Q  .\/  (
 ( P  .\/  t
 )  ./\  W ) ) )   &    |-  O  =  ( ( P  .\/  Q )  ./\  ( Z  .\/  ( ( t  .\/  z )  ./\  W ) ) )   &    |-  E  =  (
 iota_ u  e.  B A. z  e.  A  ( ( -.  z  .<_  W  /\  -.  z  .<_  ( P  .\/  Q ) )  ->  u  =  O ) )   &    |-  Y  =  if ( t  .<_  ( P  .\/  Q ) ,  E ,  G )   =>    |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  P  =/=  Q  /\  ( s  e.  A  /\  -.  s  .<_  W ) )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) 
 /\  ( t  e.  A  /\  -.  t  .<_  W ) )  /\  ( s  .<_  ( t 
 .\/  V )  /\  ( V  e.  A  /\  V  .<_  W ) ) )  ->  C  .<_  ( Y  .\/  V )
 )
 
Theoremcdleme28a 29710* Lemma for cdleme25b 29694. TODO: FIX COMMENT (Contributed by NM, 4-Feb-2013.)
 |-  B  =  ( Base `  K )   &    |-  .<_  =  ( le `  K )   &    |- 
 .\/  =  ( join `  K )   &    |-  ./\  =  ( meet `  K )   &    |-  A  =  ( Atoms `  K )   &    |-  H  =  ( LHyp `  K )   &    |-  U  =  ( ( P  .\/  Q )  ./\  W )   &    |-  F  =  ( ( s  .\/  U )  ./\  ( Q  .\/  ( ( P  .\/  s )  ./\  W ) ) )   &    |-  Z  =  ( ( z  .\/  U )  ./\  ( Q  .\/  ( ( P  .\/  z )  ./\  W ) ) )   &    |-  N  =  ( ( P  .\/  Q )  ./\  ( Z  .\/  ( ( s  .\/  z )  ./\  W ) ) )   &    |-  D  =  (
 iota_ u  e.  B A. z  e.  A  ( ( -.  z  .<_  W  /\  -.  z  .<_  ( P  .\/  Q ) )  ->  u  =  N ) )   &    |-  C  =  if ( s  .<_  ( P  .\/  Q ) ,  D ,  F )   &    |-  G  =  ( (
 t  .\/  U )  ./\  ( Q  .\/  (
 ( P  .\/  t
 )  ./\  W ) ) )   &    |-  O  =  ( ( P  .\/  Q )  ./\  ( Z  .\/  ( ( t  .\/  z )  ./\  W ) ) )   &    |-  E  =  (
 iota_ u  e.  B A. z  e.  A  ( ( -.  z  .<_  W  /\  -.  z  .<_  ( P  .\/  Q ) )  ->  u  =  O ) )   &    |-  Y  =  if ( t  .<_  ( P  .\/  Q ) ,  E ,  G )   &    |-  V  =  ( (
 s  .\/  t )  ./\  ( X  ./\  W ) )   =>    |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W ) 
 /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( P  =/=  Q  /\  (
 s  e.  A  /\  -.  s  .<_  W )  /\  ( t  e.  A  /\  -.  t  .<_  W ) )  /\  ( s  =/=  t  /\  (
 ( s  .\/  ( X  ./\  W ) )  =  X  /\  (
 t  .\/  ( X  ./\ 
 W ) )  =  X )  /\  ( X  e.  B  /\  -.  X  .<_  W ) ) )  ->  ( C  .\/  ( X  ./\  W ) )  .<_  ( Y  .\/  ( X  ./\  W ) ) )
 
Theoremcdleme28b 29711* Lemma for cdleme25b 29694. TODO: FIX COMMENT (Contributed by NM, 6-Feb-2013.)
 |-  B  =  ( Base `  K )   &    |-  .<_  =  ( le `  K )   &    |- 
 .\/  =  ( join `  K )   &    |-  ./\  =  ( meet `  K )   &    |-  A  =  ( Atoms `  K )   &    |-  H  =  ( LHyp `  K )   &    |-  U  =  ( ( P  .\/  Q )  ./\  W )   &    |-  F  =  ( ( s  .\/  U )  ./\  ( Q  .\/  ( ( P  .\/  s )  ./\  W ) ) )   &    |-  Z  =  ( ( z  .\/  U )  ./\  ( Q  .\/  ( ( P  .\/  z )  ./\  W ) ) )   &    |-  N  =  ( ( P  .\/  Q )  ./\  ( Z  .\/  ( ( s  .\/  z )  ./\  W ) ) )   &    |-  D  =  (
 iota_ u  e.  B A. z  e.  A  ( ( -.  z  .<_  W  /\  -.  z  .<_  ( P  .\/  Q ) )  ->  u  =  N ) )   &    |-  C  =  if ( s  .<_  ( P  .\/  Q ) ,  D ,  F )   &    |-  G  =  ( (
 t  .\/  U )  ./\  ( Q  .\/  (
 ( P  .\/  t
 )  ./\  W ) ) )   &    |-  O  =  ( ( P  .\/  Q )  ./\  ( Z  .\/  ( ( t  .\/  z )  ./\  W ) ) )   &    |-  E  =  (
 iota_ u  e.  B A. z  e.  A  ( ( -.  z  .<_  W  /\  -.  z  .<_  ( P  .\/  Q ) )  ->  u  =  O ) )   &    |-  Y  =  if ( t  .<_  ( P  .\/  Q ) ,  E ,  G )   =>    |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W ) 
 /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( P  =/=  Q  /\  (
 s  e.  A  /\  -.  s  .<_  W )  /\  ( t  e.  A  /\  -.  t  .<_  W ) )  /\  ( s  =/=  t  /\  (
 ( s  .\/  ( X  ./\  W ) )  =  X  /\  (
 t  .\/  ( X  ./\ 
 W ) )  =  X )  /\  ( X  e.  B  /\  -.  X  .<_  W ) ) )  ->  ( C  .\/  ( X  ./\  W ) )  =  ( Y 
 .\/  ( X  ./\  W ) ) )
 
Theoremcdleme28c 29712* Part of proof of Lemma E in [Crawley] p. 113. Eliminate the  s  =/=  t antecedent in cdleme28b 29711. TODO: FIX COMMENT (Contributed by NM, 6-Feb-2013.)
 |-  B  =  ( Base `  K )   &    |-  .<_  =  ( le `  K )   &    |- 
 .\/  =  ( join `  K )   &    |-  ./\  =  ( meet `  K )   &    |-  A  =  ( Atoms `  K )   &    |-  H  =  ( LHyp `  K )   &    |-  U  =  ( ( P  .\/  Q )  ./\  W )   &    |-  F  =  ( ( s  .\/  U )  ./\  ( Q  .\/  ( ( P  .\/  s )  ./\  W ) ) )   &    |-  Z  =  ( ( z  .\/  U )  ./\  ( Q  .\/  ( ( P  .\/  z )  ./\  W ) ) )   &    |-  N  =  ( ( P  .\/  Q )  ./\  ( Z  .\/  ( ( s  .\/  z )  ./\  W ) ) )   &    |-  D  =  (
 iota_ u  e.  B A. z  e.  A  ( ( -.  z  .<_  W  /\  -.  z  .<_  ( P  .\/  Q ) )  ->  u  =  N ) )   &    |-  C  =  if ( s  .<_  ( P  .\/  Q ) ,  D ,  F )   &    |-  G  =  ( (
 t  .\/  U )  ./\  ( Q  .\/  (
 ( P  .\/  t
 )  ./\  W ) ) )   &    |-  O  =  ( ( P  .\/  Q )  ./\  ( Z  .\/  ( ( t  .\/  z )  ./\  W ) ) )   &    |-  E  =  (
 iota_ u  e.  B A. z  e.  A  ( ( -.  z  .<_  W  /\  -.  z  .<_  ( P  .\/  Q ) )  ->  u  =  O ) )   &    |-  Y  =  if ( t  .<_  ( P  .\/  Q ) ,  E ,  G )   =>    |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W ) 
 /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( P  =/=  Q  /\  (
 s  e.  A  /\  -.  s  .<_  W )  /\  ( t  e.  A  /\  -.  t  .<_  W ) )  /\  ( ( s  .\/  ( X  ./\ 
 W ) )  =  X  /\  ( t 
 .\/  ( X  ./\  W ) )  =  X  /\  ( X  e.  B  /\  -.  X  .<_  W ) ) )  ->  ( C  .\/  ( X  ./\  W ) )  =  ( Y  .\/  ( X  ./\ 
 W ) ) )
 
Theoremcdleme28 29713* Quantified version of cdleme28c 29712. (Compare cdleme24 29692.) (Contributed by NM, 7-Feb-2013.)
 |-  B  =  ( Base `  K )   &    |-  .<_  =  ( le `  K )   &    |- 
 .\/  =  ( join `  K )   &    |-  ./\  =  ( meet `  K )   &    |-  A  =  ( Atoms `  K )   &    |-  H  =  ( LHyp `  K )   &    |-  U  =  ( ( P  .\/  Q )  ./\  W )   &    |-  F  =  ( ( s  .\/  U )  ./\  ( Q  .\/  ( ( P  .\/  s )  ./\  W ) ) )   &    |-  Z  =  ( ( z  .\/  U )  ./\  ( Q  .\/  ( ( P  .\/  z )  ./\  W ) ) )   &    |-  N  =  ( ( P  .\/  Q )  ./\  ( Z  .\/  ( ( s  .\/  z )  ./\  W ) ) )   &    |-  D  =  (
 iota_ u  e.  B A. z  e.  A  ( ( -.  z  .<_  W  /\  -.  z  .<_  ( P  .\/  Q ) )  ->  u  =  N ) )   &    |-  C  =  if ( s  .<_  ( P  .\/  Q ) ,  D ,  F )   &    |-  G  =  ( (
 t  .\/  U )  ./\  ( Q  .\/  (
 ( P  .\/  t
 )  ./\  W ) ) )   &    |-  O  =  ( ( P  .\/  Q )  ./\  ( Z  .\/  ( ( t  .\/  z )  ./\  W ) ) )   &    |-  E  =  (
 iota_ u  e.  B A. z  e.  A  ( ( -.  z  .<_  W  /\  -.  z  .<_  ( P  .\/  Q ) )  ->  u  =  O ) )   &    |-  Y  =  if ( t  .<_  ( P  .\/  Q ) ,  E ,  G )   =>    |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W ) 
 /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  P  =/=  Q  /\  ( X  e.  B  /\  -.  X  .<_  W ) ) 
 ->  A. s  e.  A  A. t  e.  A  ( ( ( -.  s  .<_  W  /\  ( s 
 .\/  ( X  ./\  W ) )  =  X )  /\  ( -.  t  .<_  W  /\  ( t 
 .\/  ( X  ./\  W ) )  =  X ) )  ->  ( C 
 .\/  ( X  ./\  W ) )  =  ( Y  .\/  ( X  ./\ 
 W ) ) ) )
 
Theoremcdleme29ex 29714* Lemma for cdleme29b 29715. (Compare cdleme25a 29693.) TODO: FIX COMMENT (Contributed by NM, 7-Feb-2013.)
 |-  B  =  ( Base `  K )   &    |-  .<_  =  ( le `  K )   &    |- 
 .\/  =  ( join `  K )   &    |-  ./\  =  ( meet `  K )   &    |-  A  =  ( Atoms `  K )   &    |-  H  =  ( LHyp `  K )   &    |-  U  =  ( ( P  .\/  Q )  ./\  W )   &    |-  F  =  ( ( s  .\/  U )  ./\  ( Q  .\/  ( ( P  .\/  s )  ./\  W ) ) )   &    |-  Z  =  ( ( z  .\/  U )  ./\  ( Q  .\/  ( ( P  .\/  z )  ./\  W ) ) )   &    |-  N  =  ( ( P  .\/  Q )  ./\  ( Z  .\/  ( ( s  .\/  z )  ./\  W ) ) )   &    |-  D  =  (
 iota_ u  e.  B A. z  e.  A  ( ( -.  z  .<_  W  /\  -.  z  .<_  ( P  .\/  Q ) )  ->  u  =  N ) )   &    |-  C  =  if ( s  .<_  ( P  .\/  Q ) ,  D ,  F )   =>    |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W ) 
 /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  P  =/=  Q  /\  ( X  e.  B  /\  -.  X  .<_  W ) ) 
 ->  E. s  e.  A  ( ( -.  s  .<_  W  /\  ( s 
 .\/  ( X  ./\  W ) )  =  X )  /\  ( C  .\/  ( X  ./\  W ) )  e.  B ) )
 
Theoremcdleme29b 29715* Transform cdleme28 29713. (Compare cdleme25b 29694.) TODO: FIX COMMENT (Contributed by NM, 7-Feb-2013.)
 |-  B  =  ( Base `  K )   &    |-  .<_  =  ( le `  K )   &    |- 
 .\/  =  ( join `  K )   &    |-  ./\  =  ( meet `  K )   &    |-  A  =  ( Atoms `  K )   &    |-  H  =  ( LHyp `  K )   &    |-  U  =  ( ( P  .\/  Q )  ./\  W )   &    |-  F  =  ( ( s  .\/  U )  ./\  ( Q  .\/  ( ( P  .\/  s )  ./\  W ) ) )   &    |-  Z  =  ( ( z  .\/  U )  ./\  ( Q  .\/  ( ( P  .\/  z )  ./\  W ) ) )   &    |-  N  =  ( ( P  .\/  Q )  ./\  ( Z  .\/  ( ( s  .\/  z )  ./\  W ) ) )   &    |-  D  =  (
 iota_ u  e.  B A. z  e.  A  ( ( -.  z  .<_  W  /\  -.  z  .<_  ( P  .\/  Q ) )  ->  u  =  N ) )   &    |-  C  =  if ( s  .<_  ( P  .\/  Q ) ,  D ,  F )   =>    |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W ) 
 /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  P  =/=  Q  /\  ( X  e.  B  /\  -.  X  .<_  W ) ) 
 ->  E. v  e.  B  A. s  e.  A  ( ( -.  s  .<_  W 
 /\  ( s  .\/  ( X  ./\  W ) )  =  X ) 
 ->  v  =  ( C  .\/  ( X  ./\  W ) ) ) )
 
Theoremcdleme29c 29716* Transform cdleme28b 29711. (Compare cdleme25c 29695.) TODO: FIX COMMENT (Contributed by NM, 8-Feb-2013.)
 |-  B  =  ( Base `  K )   &    |-  .<_  =  ( le `  K )   &    |- 
 .\/  =  ( join `  K )   &    |-  ./\  =  ( meet `  K )   &    |-  A  =  ( Atoms `  K )   &    |-  H  =  ( LHyp `  K )   &    |-  U  =  ( ( P  .\/  Q )  ./\  W )   &    |-  F  =  ( ( s  .\/  U )  ./\  ( Q  .\/  ( ( P  .\/  s )  ./\  W ) ) )   &    |-  Z  =  ( ( z  .\/  U )  ./\  ( Q  .\/  ( ( P  .\/  z )  ./\  W ) ) )   &    |-  N  =  ( ( P  .\/  Q )  ./\  ( Z  .\/  ( ( s  .\/  z )  ./\  W ) ) )   &    |-  D  =  (
 iota_ u  e.  B A. z  e.  A  ( ( -.  z  .<_  W  /\  -.  z  .<_  ( P  .\/  Q ) )  ->  u  =  N ) )   &    |-  C  =  if ( s  .<_  ( P  .\/  Q ) ,  D ,  F )   =>    |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W ) 
 /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  P  =/=  Q  /\  ( X  e.  B  /\  -.  X  .<_  W ) ) 
 ->  E! v  e.  B  A. s  e.  A  ( ( -.  s  .<_  W 
 /\  ( s  .\/  ( X  ./\  W ) )  =  X ) 
 ->  v  =  ( C  .\/  ( X  ./\  W ) ) ) )
 
Theoremcdleme29cl 29717* Show closure of the unique element in cdleme28c 29712. (Contributed by NM, 8-Feb-2013.)
 |-  B  =  ( Base `  K )   &    |-  .<_  =  ( le `  K )   &    |- 
 .\/  =  ( join `  K )   &    |-  ./\  =  ( meet `  K )   &    |-  A  =  ( Atoms `  K )   &    |-  H  =  ( LHyp `  K )   &    |-  U  =  ( ( P  .\/  Q )  ./\  W )   &    |-  F  =  ( ( s  .\/  U )  ./\  ( Q  .\/  ( ( P  .\/  s )  ./\  W ) ) )   &    |-  Z  =  ( ( z  .\/  U )  ./\  ( Q  .\/  ( ( P  .\/  z )  ./\  W ) ) )   &    |-  N  =  ( ( P  .\/  Q )  ./\  ( Z  .\/  ( ( s  .\/  z )  ./\  W ) ) )   &    |-  D  =  (
 iota_ u  e.  B A. z  e.  A  ( ( -.  z  .<_  W  /\  -.  z  .<_  ( P  .\/  Q ) )  ->  u  =  N ) )   &    |-  C  =  if ( s  .<_  ( P  .\/  Q ) ,  D ,  F )   &    |-  I  =  ( iota_ v  e.  B A. s  e.  A  ( ( -.  s  .<_  W  /\  (
 s  .\/  ( X  ./\ 
 W ) )  =  X )  ->  v  =  ( C  .\/  ( X  ./\  W ) ) ) )   =>    |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W ) 
 /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  P  =/=  Q  /\  ( X  e.  B  /\  -.  X  .<_  W ) ) 
 ->  I  e.  B )
 
Theoremcdleme30a 29718 Part of proof of Lemma E in [Crawley] p. 113. (Contributed by NM, 9-Feb-2013.)
 |-  B  =  ( Base `  K )   &    |-  .<_  =  ( le `  K )   &    |- 
 .\/  =  ( join `  K )   &    |-  ./\  =  ( meet `  K )   &    |-  A  =  ( Atoms `  K )   &    |-  H  =  ( LHyp `  K )   =>    |-  (
 ( ( K  e.  HL  /\  W  e.  H )  /\  ( s  e.  A  /\  ( X  e.  B  /\  -.  X  .<_  W )  /\  Y  e.  B )  /\  ( ( s  .\/  ( X  ./\  W ) )  =  X  /\  X  .<_  Y ) ) 
 ->  ( s  .\/  ( Y  ./\  W ) )  =  Y )
 
Theoremcdleme31so 29719* Part of proof of Lemma E in [Crawley] p. 113. (Contributed by NM, 25-Feb-2013.)
 |-  O  =  ( iota_ z  e.  B A. s  e.  A  ( ( -.  s  .<_  W  /\  ( s 
 .\/  ( x  ./\  W ) )  =  x )  ->  z  =  ( N  .\/  ( x 
 ./\  W ) ) ) )   &    |-  C  =  (
 iota_ z  e.  B A. s  e.  A  ( ( -.  s  .<_  W  /\  ( s 
 .\/  ( X  ./\  W ) )  =  X )  ->  z  =  ( N  .\/  ( X  ./\ 
 W ) ) ) )   =>    |-  ( X  e.  B  -> 
 [_ X  /  x ]_ O  =  C )
 
Theoremcdleme31sn 29720* Part of proof of Lemma E in [Crawley] p. 113. (Contributed by NM, 26-Feb-2013.)
 |-  N  =  if ( s  .<_  ( P  .\/  Q ) ,  I ,  D )   &    |-  C  =  if ( R  .<_  ( P  .\/  Q ) ,  [_ R  /  s ]_ I ,  [_ R  /  s ]_ D )   =>    |-  ( R  e.  A  -> 
 [_ R  /  s ]_ N  =  C )
 
Theoremcdleme31sn1 29721* Part of proof of Lemma E in [Crawley] p. 113. (Contributed by NM, 26-Feb-2013.)
 |-  I  =  ( iota_ y  e.  B A. t  e.  A  ( ( -.  t  .<_  W  /\  -.  t  .<_  ( P  .\/  Q ) )  ->  y  =  G ) )   &    |-  N  =  if ( s  .<_  ( P  .\/  Q ) ,  I ,  D )   &    |-  C  =  ( iota_ y  e.  B A. t  e.  A  ( ( -.  t  .<_  W  /\  -.  t  .<_  ( P  .\/  Q ) )  ->  y  =  [_ R  /  s ]_ G ) )   =>    |-  ( ( R  e.  A  /\  R  .<_  ( P  .\/  Q ) )  ->  [_ R  /  s ]_ N  =  C )
 
Theoremcdleme31se 29722* Part of proof of Lemma D in [Crawley] p. 113. (Contributed by NM, 26-Feb-2013.)
 |-  E  =  ( ( P  .\/  Q )  ./\  ( D  .\/  ( ( s  .\/  T )  ./\  W )
 ) )   &    |-  Y  =  ( ( P  .\/  Q )  ./\  ( D  .\/  ( ( R  .\/  T )  ./\  W )
 ) )   =>    |-  ( R  e.  A  -> 
 [_ R  /  s ]_ E  =  Y )
 
Theoremcdleme31se2 29723* Part of proof of Lemma D in [Crawley] p. 113. (Contributed by NM, 3-Apr-2013.)
 |-  E  =  ( ( P  .\/  Q )  ./\  ( D  .\/  ( ( R  .\/  t )  ./\  W ) ) )   &    |-  Y  =  ( ( P  .\/  Q )  ./\  ( [_ S  /  t ]_ D  .\/  ( ( R  .\/  S )  ./\  W )
 ) )   =>    |-  ( S  e.  A  -> 
 [_ S  /  t ]_ E  =  Y )
 
Theoremcdleme31sc 29724* Part of proof of Lemma E in [Crawley] p. 113. (Contributed by NM, 31-Mar-2013.)
 |-  C  =  ( ( s  .\/  U )  ./\  ( Q  .\/  ( ( P  .\/  s )  ./\  W ) ) )   &    |-  X  =  ( ( R  .\/  U )  ./\  ( Q  .\/  ( ( P  .\/  R )  ./\  W )
 ) )   =>    |-  ( R  e.  A  -> 
 [_ R  /  s ]_ C  =  X )
 
Theoremcdleme31sde 29725* Part of proof of Lemma D in [Crawley] p. 113. (Contributed by NM, 31-Mar-2013.)
 |-  D  =  ( ( t  .\/  U )  ./\  ( Q  .\/  ( ( P  .\/  t )  ./\  W ) ) )   &    |-  E  =  ( ( P  .\/  Q )  ./\  ( D  .\/  ( ( s  .\/  t )  ./\  W ) ) )   &    |-  Y  =  ( ( S  .\/  U )  ./\  ( Q  .\/  ( ( P  .\/  S )  ./\  W )
 ) )   &    |-  Z  =  ( ( P  .\/  Q )  ./\  ( Y  .\/  ( ( R  .\/  S )  ./\  W )
 ) )   =>    |-  ( ( R  e.  A  /\  S  e.  A )  ->  [_ R  /  s ]_ [_ S  /  t ]_ E  =  Z )
 
Theoremcdleme31snd 29726* Part of proof of Lemma D in [Crawley] p. 113. (Contributed by NM, 1-Apr-2013.)
 |-  D  =  ( ( t  .\/  U )  ./\  ( Q  .\/  ( ( P  .\/  t )  ./\  W ) ) )   &    |-  N  =  ( ( v  .\/  V )  ./\  ( P  .\/  ( ( Q  .\/  v )  ./\  W ) ) )   &    |-  E  =  ( ( O  .\/  U )  ./\  ( Q  .\/  ( ( P  .\/  O )  ./\  W )
 ) )   &    |-  O  =  ( ( S  .\/  V )  ./\  ( P  .\/  ( ( Q  .\/  S )  ./\  W )
 ) )   =>    |-  ( S  e.  A  -> 
 [_ S  /  v ]_ [_ N  /  t ]_ D  =  E )
 
Theoremcdleme31sdnN 29727* Part of proof of Lemma E in [Crawley] p. 113. (Contributed by NM, 31-Mar-2013.) (New usage is discouraged.)
 |-  C  =  ( ( s  .\/  U )  ./\  ( Q  .\/  ( ( P  .\/  s )  ./\  W ) ) )   &    |-  D  =  ( ( t  .\/  U )  ./\  ( Q  .\/  ( ( P  .\/  t )  ./\  W ) ) )   &    |-  N  =  if ( s  .<_  ( P 
 .\/  Q ) ,  I ,  C )   =>    |-  N  =  if (
 s  .<_  ( P  .\/  Q ) ,  I ,  [_ s  /  t ]_ D )
 
Theoremcdleme31sn1c 29728* Part of proof of Lemma E in [Crawley] p. 113. (Contributed by NM, 1-Mar-2013.)
 |-  G  =  ( ( P  .\/  Q )  ./\  ( E  .\/  ( ( s  .\/  t )  ./\  W ) ) )   &    |-  I  =  (
 iota_ y  e.  B A. t  e.  A  ( ( -.  t  .<_  W  /\  -.  t  .<_  ( P  .\/  Q ) )  ->  y  =  G ) )   &    |-  N  =  if ( s  .<_  ( P  .\/  Q ) ,  I ,  D )   &    |-  Y  =  ( ( P  .\/  Q )  ./\  ( E  .\/  ( ( R  .\/  t )  ./\ 
 W ) ) )   &    |-  C  =  ( iota_ y  e.  B A. t  e.  A  ( ( -.  t  .<_  W  /\  -.  t  .<_  ( P  .\/  Q ) )  ->  y  =  Y ) )   =>    |-  ( ( R  e.  A  /\  R  .<_  ( P  .\/  Q ) )  ->  [_ R  /  s ]_ N  =  C )
 
Theoremcdleme31sn2 29729* Part of proof of Lemma E in [Crawley] p. 113. (Contributed by NM, 26-Feb-2013.)
 |-  D  =  ( ( s  .\/  U )  ./\  ( Q  .\/  ( ( P  .\/  s )  ./\  W ) ) )   &    |-  N  =  if ( s  .<_  ( P 
 .\/  Q ) ,  I ,  D )   &    |-  C  =  ( ( R  .\/  U )  ./\  ( Q  .\/  ( ( P  .\/  R )  ./\  W )
 ) )   =>    |-  ( ( R  e.  A  /\  -.  R  .<_  ( P  .\/  Q )
 )  ->  [_ R  /  s ]_ N  =  C )
 
Theoremcdleme31fv 29730* Part of proof of Lemma E in [Crawley] p. 113. (Contributed by NM, 10-Feb-2013.)
 |-  O  =  ( iota_ z  e.  B A. s  e.  A  ( ( -.  s  .<_  W  /\  ( s 
 .\/  ( x  ./\  W ) )  =  x )  ->  z  =  ( N  .\/  ( x 
 ./\  W ) ) ) )   &    |-  F  =  ( x  e.  B  |->  if ( ( P  =/=  Q 
 /\  -.  x  .<_  W ) ,  O ,  x ) )   &    |-  C  =  ( iota_ z  e.  B A. s  e.  A  ( ( -.  s  .<_  W  /\  ( s 
 .\/  ( X  ./\  W ) )  =  X )  ->  z  =  ( N  .\/  ( X  ./\ 
 W ) ) ) )   =>    |-  ( X  e.  B  ->  ( F `  X )  =  if (
 ( P  =/=  Q  /\  -.  X  .<_  W ) ,  C ,  X ) )
 
Theoremcdleme31fv1 29731* Part of proof of Lemma E in [Crawley] p. 113. (Contributed by NM, 10-Feb-2013.)
 |-  O  =  ( iota_ z  e.  B A. s  e.  A  ( ( -.  s  .<_  W  /\  ( s 
 .\/  ( x  ./\  W ) )  =  x )  ->  z  =  ( N  .\/  ( x 
 ./\  W ) ) ) )   &    |-  F  =  ( x  e.  B  |->  if ( ( P  =/=  Q 
 /\  -.  x  .<_  W ) ,  O ,  x ) )   &    |-  C  =  ( iota_ z  e.  B A. s  e.  A  ( ( -.  s  .<_  W  /\  ( s 
 .\/  ( X  ./\  W ) )  =  X )  ->  z  =  ( N  .\/  ( X  ./\ 
 W ) ) ) )   =>    |-  ( ( X  e.  B  /\  ( P  =/=  Q 
 /\  -.  X  .<_  W ) )  ->  ( F `  X )  =  C )
 
Theoremcdleme31fv1s 29732* Part of proof of Lemma E in [Crawley] p. 113. (Contributed by NM, 25-Feb-2013.)
 |-  O  =  ( iota_ z  e.  B A. s  e.  A  ( ( -.  s  .<_  W  /\  ( s 
 .\/  ( x  ./\  W ) )  =  x )  ->  z  =  ( N  .\/  ( x 
 ./\  W ) ) ) )   &    |-  F  =  ( x  e.  B  |->  if ( ( P  =/=  Q 
 /\  -.  x  .<_  W ) ,  O ,  x ) )   =>    |-  ( ( X  e.  B  /\  ( P  =/=  Q  /\  -.  X  .<_  W ) ) 
 ->  ( F `  X )  =  [_ X  /  x ]_ O )
 
Theoremcdleme31fv2 29733* Part of proof of Lemma E in [Crawley] p. 113. (Contributed by NM, 23-Feb-2013.)
 |-  F  =  ( x  e.  B  |->  if ( ( P  =/=  Q 
 /\  -.  x  .<_  W ) ,  O ,  x ) )   =>    |-  ( ( X  e.  B  /\  -.  ( P  =/=  Q  /\  -.  X  .<_  W ) ) 
 ->  ( F `  X )  =  X )
 
Theoremcdleme31id 29734* Part of proof of Lemma E in [Crawley] p. 113. (Contributed by NM, 18-Apr-2013.)
 |-  F  =  ( x  e.  B  |->  if ( ( P  =/=  Q 
 /\  -.  x  .<_  W ) ,  O ,  x ) )   =>    |-  ( ( X  e.  B  /\  P  =  Q )  ->  ( F `  X )  =  X )
 
Theoremcdlemefrs29pre00 29735 ***START OF VALUE AT ATOM STUFF TO REPLACE ONES BELOW*** FIX COMMENT. TODO: see if this is the optimal utility theorem using lhpmat 29370. (Contributed by NM, 29-Mar-2013.)
 |-  B  =  ( Base `  K )   &    |-  .<_  =  ( le `  K )   &    |- 
 .\/  =  ( join `  K )   &    |-  ./\  =  ( meet `  K )   &    |-  A  =  ( Atoms `  K )   &    |-  H  =  ( LHyp `  K )   &    |-  (
 s  =  R  ->  (
 ph 
 <->  ps ) )   =>    |-  ( ( ( ( K  e.  HL  /\  W  e.  H ) 
 /\  ( R  e.  A  /\  -.  R  .<_  W )  /\  ps )  /\  s  e.  A )  ->  ( ( ( -.  s  .<_  W  /\  ph )  /\  ( s 
 .\/  ( R  ./\  W ) )  =  R ) 
 <->  ( -.  s  .<_  W 
 /\  ( s  .\/  ( R  ./\  W ) )  =  R ) ) )
 
Theoremcdlemefrs29bpre0 29736* TODO fix comment. (Contributed by NM, 29-Mar-2013.)
 |-  B  =  ( Base `  K )   &    |-  .<_  =  ( le `  K )   &    |- 
 .\/  =  ( join `  K )   &    |-  ./\  =  ( meet `  K )   &    |-  A  =  ( Atoms `  K )   &    |-  H  =  ( LHyp `  K )   &    |-  (
 s  =  R  ->  (
 ph 
 <->  ps ) )   &    |-  (
 ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  P  =/=  Q 
 /\  ( s  e.  A  /\  ( -.  s  .<_  W  /\  ph )
 ) )  ->  N  e.  B )   =>    |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W ) 
 /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( P  =/=  Q  /\  ( R  e.  A  /\  -.  R  .<_  W ) ) 
 /\  ps )  ->  ( A. s  e.  A  ( ( ( -.  s  .<_  W  /\  ph )  /\  ( s  .\/  ( R  ./\  W ) )  =  R )  ->  z  =  ( N  .\/  ( R  ./\  W ) ) )  <->  z  =  [_ R  /  s ]_ N ) )
 
Theoremcdlemefrs29bpre1 29737* TODO FIX COMMENT (Contributed by NM, 29-Mar-2013.)
 |-  B  =  ( Base `  K )   &    |-  .<_  =  ( le `  K )   &    |- 
 .\/  =  ( join `  K )   &    |-  ./\  =  ( meet `  K )   &    |-  A  =  ( Atoms `  K )   &    |-  H  =  ( LHyp `  K )   &    |-  (
 s  =  R  ->  (
 ph 
 <->  ps ) )   &    |-  (
 ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  P  =/=  Q 
 /\  ( s  e.  A  /\  ( -.  s  .<_  W  /\  ph )
 ) )  ->  N  e.  B )   &    |-  ( ( ( ( K  e.  HL  /\  W  e.  H ) 
 /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) ) 
 /\  ( P  =/=  Q 
 /\  ( R  e.  A  /\  -.  R  .<_  W ) )  /\  ps )  ->  [_ R  /  s ]_ N  e.  B )   =>    |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W ) 
 /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( P  =/=  Q  /\  ( R  e.  A  /\  -.  R  .<_  W ) ) 
 /\  ps )  ->  E. z  e.  B  A. s  e.  A  ( ( ( -.  s  .<_  W  /\  ph )  /\  ( s 
 .\/  ( R  ./\  W ) )  =  R )  ->  z  =  ( N  .\/  ( R  ./\ 
 W ) ) ) )
 
Theoremcdlemefrs29cpre1 29738* TODO FIX COMMENT (Contributed by NM, 29-Mar-2013.)
 |-  B  =  ( Base `  K )   &    |-  .<_  =  ( le `  K )   &    |- 
 .\/  =  ( join `  K )   &    |-  ./\  =  ( meet `  K )   &    |-  A  =  ( Atoms `  K )   &    |-  H  =  ( LHyp `  K )   &    |-  (
 s  =  R  ->  (
 ph 
 <->  ps ) )   &    |-  (
 ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  P  =/=  Q 
 /\  ( s  e.  A  /\  ( -.  s  .<_  W  /\  ph )
 ) )  ->  N  e.  B )   &    |-  ( ( ( ( K  e.  HL  /\  W  e.  H ) 
 /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) ) 
 /\  ( P  =/=  Q 
 /\  ( R  e.  A  /\  -.  R  .<_  W ) )  /\  ps )  ->  [_ R  /  s ]_ N  e.  B )   =>    |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W ) 
 /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( P  =/=  Q  /\  ( R  e.  A  /\  -.  R  .<_  W ) ) 
 /\  ps )  ->  E! z  e.  B  A. s  e.  A  ( ( ( -.  s  .<_  W  /\  ph )  /\  ( s 
 .\/  ( R  ./\  W ) )  =  R )  ->  z  =  ( N  .\/  ( R  ./\ 
 W ) ) ) )
 
Theoremcdlemefrs29clN 29739* TODO: NOT USED? Show closure of the unique element in cdlemefrs29cpre1 29738. (Contributed by NM, 29-Mar-2013.) (New usage is discouraged.)
 |-  B  =  ( Base `  K )   &    |-  .<_  =  ( le `  K )   &    |- 
 .\/  =  ( join `  K )   &    |-  ./\  =  ( meet `  K )   &    |-  A  =  ( Atoms `  K )   &    |-  H  =  ( LHyp `  K )   &    |-  (
 s  =  R  ->  (
 ph 
 <->  ps ) )   &    |-  (
 ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  P  =/=  Q 
 /\  ( s  e.  A  /\  ( -.  s  .<_  W  /\  ph )
 ) )  ->  N  e.  B )   &    |-  ( ( ( ( K  e.  HL  /\  W  e.  H ) 
 /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) ) 
 /\  ( P  =/=  Q 
 /\  ( R  e.  A  /\  -.  R  .<_  W ) )  /\  ps )  ->  [_ R  /  s ]_ N  e.  B )   &    |-  O  =  ( iota_ z  e.  B A. s  e.  A  ( ( -.  s  .<_  W  /\  (
 s  .\/  ( R  ./\ 
 W ) )  =  R )  ->  z  =  ( N  .\/  ( R  ./\  W ) ) ) )   =>    |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W ) 
 /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( P  =/=  Q  /\  ( R  e.  A  /\  -.  R  .<_  W ) ) 
 /\  ps )  ->  O  e.  B )
 
Theoremcdlemefrs32fva 29740* Part of proof of Lemma E in [Crawley] p. 113. Value of  F at an atom not under  W. TODO: FIX COMMENT TODO: consolidate uses of lhpmat 29370 here and elsewhere, and presence/absence of  s 
.<_  ( P  .\/  Q
) term. Also, why can proof be shortened with cdleme29cl 29717? What is difference from cdlemefs27cl 29753? (Contributed by NM, 29-Mar-2013.)
 |-  B  =  ( Base `  K )   &    |-  .<_  =  ( le `  K )   &    |- 
 .\/  =  ( join `  K )   &    |-  ./\  =  ( meet `  K )   &    |-  A  =  ( Atoms `  K )   &    |-  H  =  ( LHyp `  K )   &    |-  (
 s  =  R  ->  (
 ph 
 <->  ps ) )   &    |-  (
 ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  P  =/=  Q 
 /\  ( s  e.  A  /\  ( -.  s  .<_  W  /\  ph )
 ) )  ->  N  e.  B )   &    |-  ( ( ( ( K  e.  HL  /\  W  e.  H ) 
 /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) ) 
 /\  ( P  =/=  Q 
 /\  ( R  e.  A  /\  -.  R  .<_  W ) )  /\  ps )  ->  [_ R  /  s ]_ N  e.  B )   &    |-  O  =  ( iota_ z  e.  B A. s  e.  A  ( ( -.  s  .<_  W  /\  (
 s  .\/  ( x  ./\ 
 W ) )  =  x )  ->  z  =  ( N  .\/  ( x  ./\  W ) ) ) )   =>    |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W ) 
 /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( P  =/=  Q  /\  ( R  e.  A  /\  -.  R  .<_  W ) ) 
 /\  ps )  ->  [_ R  /  x ]_ O  =  [_ R  /  s ]_ N )
 
Theoremcdlemefrs32fva1 29741* Part of proof of Lemma E in [Crawley] p. 113. TODO: FIX COMMENT (Contributed by NM, 29-Mar-2013.)
 |-  B  =  ( Base `  K )   &    |-  .<_  =  ( le `  K )   &    |- 
 .\/  =  ( join `  K )   &    |-  ./\  =  ( meet `  K )   &    |-  A  =  ( Atoms `  K )   &    |-  H  =  ( LHyp `  K )   &    |-  (
 s  =  R  ->  (
 ph 
 <->  ps ) )   &    |-  (
 ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  P  =/=  Q 
 /\  ( s  e.  A  /\  ( -.  s  .<_  W  /\  ph )
 ) )  ->  N  e.  B )   &    |-  ( ( ( ( K  e.  HL  /\  W  e.  H ) 
 /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) ) 
 /\  ( P  =/=  Q 
 /\  ( R  e.  A  /\  -.  R  .<_  W ) )  /\  ps )  ->  [_ R  /  s ]_ N  e.  B )   &    |-  O  =  ( iota_ z  e.  B A. s  e.  A  ( ( -.  s  .<_  W  /\  (
 s  .\/  ( x  ./\ 
 W ) )  =  x )  ->  z  =  ( N  .\/  ( x  ./\  W ) ) ) )   &    |-  F  =  ( x  e.  B  |->  if ( ( P  =/=  Q 
 /\  -.  x  .<_  W ) ,  O ,  x ) )   =>    |-  ( ( ( ( K  e.  HL  /\  W  e.  H ) 
 /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) ) 
 /\  ( P  =/=  Q 
 /\  ( R  e.  A  /\  -.  R  .<_  W ) )  /\  ps )  ->  ( F `  R )  =  [_ R  /  s ]_ N )
 
Theoremcdlemefr29exN 29742* Lemma for cdlemefs29bpre1N 29757. (Compare cdleme25a 29693.) TODO: FIX COMMENT TODO: IS THIS NEEDED? (Contributed by NM, 28-Mar-2013.) (New usage is discouraged.)
 |-  B  =  ( Base `  K )   &    |-  .<_  =  ( le `  K )   &    |- 
 .\/  =  ( join `  K )   &    |-  ./\  =  ( meet `  K )   &    |-  A  =  ( Atoms `  K )   &    |-  H  =  ( LHyp `  K )   =>    |-  (
 ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( P  =/=  Q  /\  ( X  e.  B  /\  -.  X  .<_  W ) ) 
 /\  A. s  e.  A  C  e.  B )  ->  E. s  e.  A  ( ( -.  s  .<_  W  /\  ( s 
 .\/  ( X  ./\  W ) )  =  X )  /\  ( C  .\/  ( X  ./\  W ) )  e.  B ) )
 
Theoremcdlemefr27cl 29743 Part of proof of Lemma E in [Crawley] p. 113. Closure of  N. (Contributed by NM, 23-Mar-2013.)
 |-  B  =  ( Base `  K )   &    |-  .<_  =  ( le `  K )   &    |- 
 .\/  =  ( join `  K )   &    |-  ./\  =  ( meet `  K )   &    |-  A  =  ( Atoms `  K )   &    |-  H  =  ( LHyp `  K )   &    |-  U  =  ( ( P  .\/  Q )  ./\  W )   &    |-  C  =  ( ( s  .\/  U )  ./\  ( Q  .\/  ( ( P  .\/  s )  ./\  W ) ) )   &    |-  N  =  if ( s  .<_  ( P 
 .\/  Q ) ,  I ,  C )   =>    |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  P  e.  A  /\  Q  e.  A )  /\  ( s  e.  A  /\  -.  s  .<_  ( P 
 .\/  Q )  /\  P  =/=  Q ) )  ->  N  e.  B )
 
Theoremcdlemefr32sn2aw 29744* Show that  [_ R  / 
s ]_ N is an atom not under  W when  -.  R  .<_  ( P  .\/  Q ). (Contributed by NM, 28-Mar-2013.)
 |-  B  =  ( Base `  K )   &    |-  .<_  =  ( le `  K )   &    |- 
 .\/  =  ( join `  K )   &    |-  ./\  =  ( meet `  K )   &    |-  A  =  ( Atoms `  K )   &    |-  H  =  ( LHyp `  K )   &    |-  U  =  ( ( P  .\/  Q )  ./\  W )   &    |-  C  =  ( ( s  .\/  U )  ./\  ( Q  .\/  ( ( P  .\/  s )  ./\  W ) ) )   &    |-  N  =  if ( s  .<_  ( P 
 .\/  Q ) ,  I ,  C )   =>    |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W ) 
 /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( P  =/=  Q  /\  ( R  e.  A  /\  -.  R  .<_  W ) ) 
 /\  -.  R  .<_  ( P  .\/  Q )
 )  ->  ( [_ R  /  s ]_ N  e.  A  /\  -.  [_ R  /  s ]_ N  .<_  W ) )
 
Theoremcdlemefr32snb 29745* Show closure of  [_ R  /  s ]_ N. (Contributed by NM, 28-Mar-2013.)
 |-  B  =  ( Base `  K )   &    |-  .<_  =  ( le `  K )   &    |- 
 .\/  =  ( join `  K )   &    |-  ./\  =  ( meet `  K )   &    |-  A  =  ( Atoms `  K )   &    |-  H  =  ( LHyp `  K )   &    |-  U  =  ( ( P  .\/  Q )  ./\  W )   &    |-  C  =  ( ( s  .\/  U )  ./\  ( Q  .\/  ( ( P  .\/  s )  ./\  W ) ) )   &    |-  N  =  if ( s  .<_  ( P 
 .\/  Q ) ,  I ,  C )   =>    |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W ) 
 /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( P  =/=  Q  /\  ( R  e.  A  /\  -.  R  .<_  W ) ) 
 /\  -.  R  .<_  ( P  .\/  Q )
 )  ->  [_ R  /  s ]_ N  e.  B )
 
Theoremcdlemefr29bpre0N 29746* TODO fix comment. (Contributed by NM, 28-Mar-2013.) (New usage is discouraged.)
 |-  B  =  ( Base `  K )   &    |-  .<_  =  ( le `  K )   &    |- 
 .\/  =  ( join `  K )   &    |-  ./\  =  ( meet `  K )   &    |-  A  =  ( Atoms `  K )   &    |-  H  =  ( LHyp `  K )   &    |-  U  =  ( ( P  .\/  Q )  ./\  W )   &    |-  C  =  ( ( s  .\/  U )  ./\  ( Q  .\/  ( ( P  .\/  s )  ./\  W ) ) )   &    |-  N  =  if ( s  .<_  ( P 
 .\/  Q ) ,  I ,  C )   =>    |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W ) 
 /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( P  =/=  Q  /\  ( R  e.  A  /\  -.  R  .<_  W ) ) 
 /\  -.  R  .<_  ( P  .\/  Q )
 )  ->  ( A. s  e.  A  (
 ( ( -.  s  .<_  W  /\  -.  s  .<_  ( P  .\/  Q ) )  /\  ( s 
 .\/  ( R  ./\  W ) )  =  R )  ->  z  =  ( N  .\/  ( R  ./\ 
 W ) ) )  <-> 
 z  =  [_ R  /  s ]_ N ) )
 
Theoremcdlemefr29clN 29747* Show closure of the unique element in cdleme29c 29716. TODO fix comment. TODO Not needed? (Contributed by NM, 29-Mar-2013.) (New usage is discouraged.)
 |-  B  =  ( Base `  K )   &    |-  .<_  =  ( le `  K )   &    |- 
 .\/  =  ( join `  K )   &    |-  ./\  =  ( meet `  K )   &    |-  A  =  ( Atoms `  K )   &    |-  H  =  ( LHyp `  K )   &    |-  U  =  ( ( P  .\/  Q )  ./\  W )   &    |-  C  =  ( ( s  .\/  U )  ./\  ( Q  .\/  ( ( P  .\/  s )  ./\  W ) ) )   &    |-  N  =  if ( s  .<_  ( P 
 .\/  Q ) ,  I ,  C )   &    |-  O  =  (
 iota_ z  e.  B A. s  e.  A  ( ( -.  s  .<_  W  /\  ( s 
 .\/  ( R  ./\  W ) )  =  R )  ->  z  =  ( N  .\/  ( R  ./\ 
 W ) ) ) )   =>    |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W ) 
 /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( P  =/=  Q  /\  ( R  e.  A  /\  -.  R  .<_  W ) ) 
 /\  -.  R  .<_  ( P  .\/  Q )
 )  ->  O  e.  B )
 
Theoremcdleme43frv1snN 29748* Value of  [_ R  / 
s ]_ N when  -.  R  .<_  ( P  .\/  Q
). (Contributed by NM, 30-Mar-2013.) (New usage is discouraged.)
 |-  B  =  ( Base `  K )   &    |-  .<_  =  ( le `  K )   &    |- 
 .\/  =  ( join `  K )   &    |-  ./\  =  ( meet `  K )   &    |-  A  =  ( Atoms `  K )   &    |-  H  =  ( LHyp `  K )   &    |-  U  =  ( ( P  .\/  Q )  ./\  W )   &    |-  C  =  ( ( s  .\/  U )  ./\  ( Q  .\/  ( ( P  .\/  s )  ./\  W ) ) )   &    |-  N  =  if ( s  .<_  ( P 
 .\/  Q ) ,  I ,  C )   &    |-  X  =  ( ( R  .\/  U )  ./\  ( Q  .\/  ( ( P  .\/  R )  ./\  W )
 ) )   =>    |-  ( ( R  e.  A  /\  -.  R  .<_  ( P  .\/  Q )
 )  ->  [_ R  /  s ]_ N  =  X )
 
Theoremcdlemefr32fvaN 29749* Part of proof of Lemma E in [Crawley] p. 113. Value of  F at an atom not under  W. TODO: FIX COMMENT (Contributed by NM, 29-Mar-2013.) (New usage is discouraged.)
 |-  B  =  ( Base `  K )   &    |-  .<_  =  ( le `  K )   &    |- 
 .\/  =  ( join `  K )   &    |-  ./\  =  ( meet `  K )   &    |-  A  =  ( Atoms `  K )   &    |-  H  =  ( LHyp `  K )   &    |-  U  =  ( ( P  .\/  Q )  ./\  W )   &    |-  C  =  ( ( s  .\/  U )  ./\  ( Q  .\/  ( ( P  .\/  s )  ./\  W ) ) )   &    |-  N  =  if ( s  .<_  ( P 
 .\/  Q ) ,  I ,  C )   &    |-  O  =  (
 iota_ z  e.  B A. s  e.  A  ( ( -.  s  .<_  W  /\  ( s 
 .\/  ( x  ./\  W ) )  =  x )  ->  z  =  ( N  .\/  ( x 
 ./\  W ) ) ) )   =>    |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W ) 
 /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( P  =/=  Q  /\  ( R  e.  A  /\  -.  R  .<_  W ) ) 
 /\  -.  R  .<_  ( P  .\/  Q )
 )  ->  [_ R  /  x ]_ O  =  [_ R  /  s ]_ N )
 
Theoremcdlemefr32fva1 29750* Part of proof of Lemma E in [Crawley] p. 113. TODO: FIX COMMENT (Contributed by NM, 29-Mar-2013.)
 |-  B  =  ( Base `  K )   &    |-  .<_  =  ( le `  K )   &    |- 
 .\/  =  ( join `  K )   &    |-  ./\  =  ( meet `  K )   &    |-  A  =  ( Atoms `  K )   &    |-  H  =  ( LHyp `  K )   &    |-  U  =  ( ( P  .\/  Q )  ./\  W )   &    |-  C  =  ( ( s  .\/  U )  ./\  ( Q  .\/  ( ( P  .\/  s )  ./\  W ) ) )   &    |-  N  =  if ( s  .<_  ( P 
 .\/  Q ) ,  I ,  C )   &    |-  O  =  (
 iota_ z  e.  B A. s  e.  A  ( ( -.  s  .<_  W  /\  ( s 
 .\/  ( x  ./\  W ) )  =  x )  ->  z  =  ( N  .\/  ( x 
 ./\  W ) ) ) )   &    |-  F  =  ( x  e.  B  |->  if ( ( P  =/=  Q 
 /\  -.  x  .<_  W ) ,  O ,  x ) )   =>    |-  ( ( ( ( K  e.  HL  /\  W  e.  H ) 
 /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) ) 
 /\  ( P  =/=  Q 
 /\  ( R  e.  A  /\  -.  R  .<_  W ) )  /\  -.  R  .<_  ( P  .\/  Q ) )  ->  ( F `  R )  = 
 [_ R  /  s ]_ N )
 
Theoremcdlemefr31fv1 29751* Value of  ( F `  R ) when  -.  R  .<_  ( P  .\/  Q
). TODO This may be useful for shortening others that now use riotasv 6306 3d . TODO: FIX COMMENT (Contributed by NM, 30-Mar-2013.)
 |-  B  =  ( Base `  K )   &    |-  .<_  =  ( le `  K )   &    |- 
 .\/  =  ( join `  K )   &    |-  ./\  =  ( meet `  K )   &    |-  A  =  ( Atoms `  K )   &    |-  H  =  ( LHyp `  K )   &    |-  U  =  ( ( P  .\/  Q )  ./\  W )   &    |-  C  =  ( ( s  .\/  U )  ./\  ( Q  .\/  ( ( P  .\/  s )  ./\  W ) ) )   &    |-  N  =  if ( s  .<_  ( P 
 .\/  Q ) ,  I ,  C )   &    |-  O  =  (
 iota_ z  e.  B A. s  e.  A  ( ( -.  s  .<_  W  /\  ( s 
 .\/  ( x  ./\  W ) )  =  x )  ->  z  =  ( N  .\/  ( x 
 ./\  W ) ) ) )   &    |-  F  =  ( x  e.  B  |->  if ( ( P  =/=  Q 
 /\  -.  x  .<_  W ) ,  O ,  x ) )   &    |-  X  =  ( ( R  .\/  U )  ./\  ( Q  .\/  ( ( P  .\/  R )  ./\  W )
 ) )   =>    |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W ) 
 /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( P  =/=  Q  /\  ( R  e.  A  /\  -.  R  .<_  W ) ) 
 /\  -.  R  .<_  ( P  .\/  Q )
 )  ->  ( F `  R )  =  X )
 
Theoremcdlemefs29pre00N 29752 FIX COMMENT. TODO: see if this is the optimal utility theorem using lhpmat 29370. (Contributed by NM, 27-Mar-2013.) (New usage is discouraged.)
 |-  B  =  ( Base `  K )   &    |-  .<_  =  ( le `  K )   &    |- 
 .\/  =  ( join `  K )   &    |-  ./\  =  ( meet `  K )   &    |-  A  =  ( Atoms `  K )   &    |-  H  =  ( LHyp `  K )   =>    |-  (
 ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( R  e.  A  /\  -.  R  .<_  W )  /\  R  .<_  ( P  .\/  Q ) )  /\  s  e.  A )  ->  (
 ( ( -.  s  .<_  W  /\  s  .<_  ( P  .\/  Q )
 )  /\  ( s  .\/  ( R  ./\  W ) )  =  R )  <-> 
 ( -.  s  .<_  W 
 /\  ( s  .\/  ( R  ./\  W ) )  =  R ) ) )
 
Theoremcdlemefs27cl 29753* Part of proof of Lemma E in [Crawley] p. 113. Closure of  N. TODO FIX COMMENT This is the start of a re-proof of cdleme27cl 29706 etc. with the  s  .<_  ( P 
.\/  Q ) condition (so as to not have the  C hypothesis). (Contributed by NM, 24-Mar-2013.)
 |-  B  =  ( Base `  K )   &    |-  .<_  =  ( le `  K )   &    |- 
 .\/  =  ( join `  K )   &    |-  ./\  =  ( meet `  K )   &    |-  A  =  ( Atoms `  K )   &    |-  H  =  ( LHyp `  K )   &    |-  U  =  ( ( P  .\/  Q )  ./\  W )   &    |-  D  =  ( ( t  .\/  U )  ./\  ( Q  .\/  ( ( P  .\/  t )  ./\  W ) ) )   &    |-  E  =  ( ( P  .\/  Q )  ./\  ( D  .\/  ( ( s  .\/  t )  ./\  W ) ) )   &    |-  I  =  (
 iota_ u  e.  B A. t  e.  A  ( ( -.  t  .<_  W  /\  -.  t  .<_  ( P  .\/  Q ) )  ->  u  =  E ) )   &    |-  N  =  if ( s  .<_  ( P  .\/  Q ) ,  I ,  C )   =>    |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W ) 
 /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  (
 ( s  e.  A  /\  -.  s  .<_  W ) 
 /\  s  .<_  ( P 
 .\/  Q )  /\  P  =/=  Q ) )  ->  N  e.  B )
 
Theoremcdlemefs32sn1aw 29754* Show that  [_ R  / 
s ]_ N is an atom not under  W when  R  .<_  ( P 
.\/  Q ). (Contributed by NM, 24-Mar-2013.)
 |-  B  =  ( Base `  K )   &    |-  .<_  =  ( le `  K )   &    |- 
 .\/  =  ( join `  K )   &    |-  ./\  =  ( meet `  K )   &    |-  A  =  ( Atoms `  K )   &    |-  H  =  ( LHyp `  K )   &    |-  U  =  ( ( P  .\/  Q )  ./\  W )   &    |-  D  =  ( ( t  .\/  U )  ./\  ( Q  .\/  ( ( P  .\/  t )  ./\  W ) ) )   &    |-  E  =  ( ( P  .\/  Q )  ./\  ( D  .\/  ( ( s  .\/  t )  ./\  W ) ) )   &    |-  I  =  (
 iota_ y  e.  B A. t  e.  A  ( ( -.  t  .<_  W  /\  -.  t  .<_  ( P  .\/  Q ) )  ->  y  =  E ) )   &    |-  N  =  if ( s  .<_  ( P  .\/  Q ) ,  I ,  C )   &    |-  Y  =  ( ( P  .\/  Q )  ./\  ( D  .\/  ( ( R  .\/  t )  ./\ 
 W ) ) )   &    |-  Z  =  ( iota_ y  e.  B A. t  e.  A  ( ( -.  t  .<_  W  /\  -.  t  .<_  ( P  .\/  Q ) )  ->  y  =  Y ) )   =>    |-  ( ( ( ( K  e.  HL  /\  W  e.  H ) 
 /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) ) 
 /\  ( P  =/=  Q 
 /\  ( R  e.  A  /\  -.  R  .<_  W ) )  /\  R  .<_  ( P  .\/  Q ) )  ->  ( [_ R  /  s ]_ N  e.  A  /\  -.  [_ R  /  s ]_ N  .<_  W ) )
 
Theoremcdlemefs32snb 29755* Show closure of  [_ R  /  s ]_ N. (Contributed by NM, 24-Mar-2013.)
 |-  B  =  ( Base `  K )   &    |-  .<_  =  ( le `  K )   &    |- 
 .\/  =  ( join `  K )   &    |-  ./\  =  ( meet `  K )   &    |-  A  =  ( Atoms `  K )   &    |-  H  =  ( LHyp `  K )   &    |-  U  =  ( ( P  .\/  Q )  ./\  W )   &    |-  D  =  ( ( t  .\/  U )  ./\  ( Q  .\/  ( ( P  .\/  t )  ./\  W ) ) )   &    |-  E  =  ( ( P  .\/  Q )  ./\  ( D  .\/  ( ( s  .\/  t )  ./\  W ) ) )   &    |-  I  =  (
 iota_ y  e.  B A. t  e.  A  ( ( -.  t  .<_  W  /\  -.  t  .<_  ( P  .\/  Q ) )  ->  y  =  E ) )   &    |-  N  =  if ( s  .<_  ( P  .\/  Q ) ,  I ,  C )   =>    |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W ) 
 /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( P  =/=  Q  /\  ( R  e.  A  /\  -.  R  .<_  W ) ) 
 /\  R  .<_  ( P 
 .\/  Q ) )  ->  [_ R  /  s ]_ N  e.  B )
 
Theoremcdlemefs29bpre0N 29756* TODO FIX COMMENT (Contributed by NM, 26-Mar-2013.) (New usage is discouraged.)
 |-  B  =  ( Base `  K )   &    |-  .<_  =  ( le `  K )   &    |- 
 .\/  =  ( join `  K )   &    |-  ./\  =  ( meet `  K )   &    |-  A  =  ( Atoms `  K )   &    |-  H  =  ( LHyp `  K )   &    |-  U  =  ( ( P  .\/  Q )  ./\  W )   &    |-  D  =  ( ( t  .\/  U )  ./\  ( Q  .\/  ( ( P  .\/  t )  ./\  W ) ) )   &    |-  E  =  ( ( P  .\/  Q )  ./\  ( D  .\/  ( ( s  .\/  t )  ./\  W ) ) )   &    |-  I  =  (
 iota_ y  e.  B A. t  e.  A  ( ( -.  t  .<_  W  /\  -.  t  .<_  ( P  .\/  Q ) )  ->  y  =  E ) )   &    |-  N  =  if ( s  .<_  ( P  .\/  Q ) ,  I ,  C )   =>    |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W ) 
 /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( P  =/=  Q  /\  ( R  e.  A  /\  -.  R  .<_  W ) ) 
 /\  R  .<_  ( P 
 .\/  Q ) )  ->  ( A. s  e.  A  ( ( ( -.  s  .<_  W  /\  s  .<_  ( P  .\/  Q ) )  /\  ( s 
 .\/  ( R  ./\  W ) )  =  R )  ->  z  =  ( N  .\/  ( R  ./\ 
 W ) ) )  <-> 
 z  =  [_ R  /  s ]_ N ) )
 
Theoremcdlemefs29bpre1N 29757* TODO FIX COMMENT (Contributed by NM, 27-Mar-2013.) (New usage is discouraged.)
 |-  B  =  ( Base `  K )   &    |-  .<_  =  ( le `  K )   &    |- 
 .\/  =  ( join `  K )   &    |-  ./\  =  ( meet `  K )   &    |-  A  =  ( Atoms `  K )   &    |-  H  =  ( LHyp `  K )   &    |-  U  =  ( ( P  .\/  Q )  ./\  W )   &    |-  D  =  ( ( t  .\/  U )  ./\  ( Q  .\/  ( ( P  .\/  t )  ./\  W ) ) )   &    |-  E  =  ( ( P  .\/  Q )  ./\  ( D  .\/  ( ( s  .\/  t )  ./\  W ) ) )   &    |-  I  =  (
 iota_ y  e.  B A. t  e.  A  ( ( -.  t  .<_  W  /\  -.  t  .<_  ( P  .\/  Q ) )  ->  y  =  E ) )   &    |-  N  =  if ( s  .<_  ( P  .\/  Q ) ,  I ,  C )   =>    |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W ) 
 /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( P  =/=  Q  /\  ( R  e.  A  /\  -.  R  .<_  W ) ) 
 /\  R  .<_  ( P 
 .\/  Q ) )  ->  E. z  e.  B  A. s  e.  A  ( ( ( -.  s  .<_  W  /\  s  .<_  ( P  .\/  Q )
 )  /\  ( s  .\/  ( R  ./\  W ) )  =  R ) 
 ->  z  =  ( N  .\/  ( R  ./\  W ) ) ) )
 
Theoremcdlemefs29cpre1N 29758* TODO FIX COMMENT (Contributed by NM, 26-Mar-2013.) (New usage is discouraged.)
 |-  B  =  ( Base `  K )   &    |-  .<_  =  ( le `  K )   &    |- 
 .\/  =  ( join `  K )   &    |-  ./\  =  ( meet `  K )   &    |-  A  =  ( Atoms `  K )   &    |-  H  =  ( LHyp `  K )   &    |-  U  =  ( ( P  .\/  Q )  ./\  W )   &    |-  D  =  ( ( t  .\/  U )  ./\  ( Q  .\/  ( ( P  .\/  t )  ./\  W ) ) )   &    |-  E  =  ( ( P  .\/  Q )  ./\  ( D  .\/  ( ( s  .\/  t )  ./\  W ) ) )   &    |-  I  =  (
 iota_ y  e.  B A. t  e.  A  ( ( -.  t  .<_  W  /\  -.  t  .<_  ( P  .\/  Q ) )  ->  y  =  E ) )   &    |-  N  =  if ( s  .<_  ( P  .\/  Q ) ,  I ,  C )   =>    |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W ) 
 /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( P  =/=  Q  /\  ( R  e.  A  /\  -.  R  .<_  W ) ) 
 /\  R  .<_  ( P 
 .\/  Q ) )  ->  E! z  e.  B  A. s  e.  A  ( ( ( -.  s  .<_  W  /\  s  .<_  ( P  .\/  Q )
 )  /\  ( s  .\/  ( R  ./\  W ) )  =  R ) 
 ->  z  =  ( N  .\/  ( R  ./\  W ) ) ) )
 
Theoremcdlemefs29clN 29759* Show closure of the unique element in cdleme29c 29716. (Contributed by NM, 27-Mar-2013.) (New usage is discouraged.)
 |-  B  =  ( Base `  K )   &    |-  .<_  =  ( le `  K )   &    |- 
 .\/  =  ( join `  K )   &    |-  ./\  =  ( meet `  K )   &    |-  A  =  ( Atoms `  K )   &    |-  H  =  ( LHyp `  K )   &    |-  U  =  ( ( P  .\/  Q )  ./\  W )   &    |-  D  =  ( ( t  .\/  U )  ./\  ( Q  .\/  ( ( P  .\/  t )  ./\  W ) ) )   &    |-  E  =  ( ( P  .\/  Q )  ./\  ( D  .\/  ( ( s  .\/  t )  ./\  W ) ) )   &    |-  I  =  (
 iota_ y  e.  B A. t  e.  A  ( ( -.  t  .<_  W  /\  -.  t  .<_  ( P  .\/  Q ) )  ->  y  =  E ) )   &    |-  N  =  if ( s  .<_  ( P  .\/  Q ) ,  I ,  C )   &    |-  O  =  ( iota_ z  e.  B A. s  e.  A  ( ( -.  s  .<_  W  /\  (
 s  .\/  ( R  ./\ 
 W ) )  =  R )  ->  z  =  ( N  .\/  ( R  ./\  W ) ) ) )   =>    |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W ) 
 /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( P  =/=  Q  /\  ( R  e.  A  /\  -.  R  .<_  W ) ) 
 /\  R  .<_  ( P 
 .\/  Q ) )  ->  O  e.  B )
 
Theoremcdleme43fsv1snlem 29760* Value of  [_ R  / 
s ]_ N when  R  .<_  ( P  .\/  Q ). (Contributed by NM, 30-Mar-2013.)
 |-  B  =  ( Base `  K )   &    |-  .<_  =  ( le `  K )   &    |- 
 .\/  =  ( join `  K )   &    |-  ./\  =  ( meet `  K )   &    |-  A  =  ( Atoms `  K )   &    |-  H  =  ( LHyp `  K )   &    |-  U  =  ( ( P  .\/  Q )  ./\  W )   &    |-  D  =  ( ( t  .\/  U )  ./\  ( Q  .\/  ( ( P  .\/  t )  ./\  W ) ) )   &    |-  E  =  ( ( P  .\/  Q )  ./\  ( D  .\/  ( ( s  .\/  t )  ./\  W ) ) )   &    |-  I  =  (
 iota_ y  e.  B A. t  e.  A  ( ( -.  t  .<_  W  /\  -.  t  .<_  ( P  .\/  Q ) )  ->  y  =  E ) )   &    |-  N  =  if ( s  .<_  ( P  .\/  Q ) ,  I ,  C )   &    |-  Y  =  ( ( S  .\/  U )  ./\  ( Q  .\/  ( ( P  .\/  S )  ./\ 
 W ) ) )   &    |-  Z  =  ( ( P  .\/  Q )  ./\  ( Y  .\/  ( ( R  .\/  S )  ./\ 
 W ) ) )   &    |-  V  =  ( ( P  .\/  Q )  ./\  ( D  .\/  ( ( R  .\/  t )  ./\ 
 W ) ) )   &    |-  X  =  ( iota_ y  e.  B A. t  e.  A  ( ( -.  t  .<_  W  /\  -.  t  .<_  ( P  .\/  Q ) )  ->  y  =  V ) )   =>    |-  ( ( ( ( K  e.  HL  /\  W  e.  H ) 
 /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) ) 
 /\  ( P  =/=  Q 
 /\  ( R  e.  A  /\  -.  R  .<_  W )  /\  ( S  e.  A  /\  -.  S  .<_  W ) ) 
 /\  ( R  .<_  ( P  .\/  Q )  /\  -.  S  .<_  ( P 
 .\/  Q ) ) ) 
 ->  [_ R  /  s ]_ N  =  Z )
 
Theoremcdleme43fsv1sn 29761* Value of  [_ R  / 
s ]_ N when  R  .<_  ( P  .\/  Q ). (Contributed by NM, 30-Mar-2013.)
 |-  B  =  ( Base `  K )   &    |-  .<_  =  ( le `  K )   &    |- 
 .\/  =  ( join `  K )   &    |-  ./\  =  ( meet `  K )   &    |-  A  =  ( Atoms `  K )   &    |-  H  =  ( LHyp `  K )   &    |-  U  =  ( ( P  .\/  Q )  ./\  W )   &    |-  D  =  ( ( t  .\/  U )  ./\  ( Q  .\/  ( ( P  .\/  t )  ./\  W ) ) )   &    |-  E  =  ( ( P  .\/  Q )  ./\  ( D  .\/  ( ( s  .\/  t )  ./\  W ) ) )   &    |-  I  =  (
 iota_ y  e.  B A. t  e.  A  ( ( -.  t  .<_  W  /\  -.  t  .<_  ( P  .\/  Q ) )  ->  y  =  E ) )   &    |-  N  =  if ( s  .<_  ( P  .\/  Q ) ,  I ,  C )   &    |-  Y  =  ( ( S  .\/  U )  ./\  ( Q  .\/  ( ( P  .\/  S )  ./\ 
 W ) ) )   &    |-  Z  =  ( ( P  .\/  Q )  ./\  ( Y  .\/  ( ( R  .\/  S )  ./\ 
 W ) ) )   =>    |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W ) 
 /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( P  =/=  Q  /\  ( R  e.  A  /\  -.  R  .<_  W )  /\  ( S  e.  A  /\  -.  S  .<_  W ) )  /\  ( R 
 .<_  ( P  .\/  Q )  /\  -.  S  .<_  ( P  .\/  Q )
 ) )  ->  [_ R  /  s ]_ N  =  Z )
 
Theoremcdlemefs32fvaN 29762* Part of proof of Lemma E in [Crawley] p. 113. Value of  F at an atom not under  W. TODO: FIX COMMENT TODO: consolidate uses of lhpmat 29370 here and elsewhere, and presence/absence of  s 
.<_  ( P  .\/  Q
) term. Also, why can proof be shortened with cdleme27cl 29706? What is difference from cdlemefs27cl 29753? (Contributed by NM, 29-Mar-2013.) (New usage is discouraged.)
 |-  B  =  ( Base `  K )   &    |-  .<_  =  ( le `  K )   &    |- 
 .\/  =  ( join `  K )   &    |-  ./\  =  ( meet `  K )   &    |-  A  =  ( Atoms `  K )   &    |-  H  =  ( LHyp `  K )   &    |-  U  =  ( ( P  .\/  Q )  ./\  W )   &    |-  D  =  ( ( t  .\/  U )  ./\  ( Q  .\/  ( ( P  .\/  t )  ./\  W ) ) )   &    |-  E  =  ( ( P  .\/  Q )  ./\  ( D  .\/  ( ( s  .\/  t )  ./\  W ) ) )   &    |-  I  =  (
 iota_ y  e.  B A. t  e.  A  ( ( -.  t  .<_  W  /\  -.  t  .<_  ( P  .\/  Q ) )  ->  y  =  E ) )   &    |-  N  =  if ( s  .<_  ( P  .\/  Q ) ,  I ,  C )   &    |-  O  =  ( iota_ z  e.  B A. s  e.  A  ( ( -.  s  .<_  W  /\  (
 s  .\/  ( x  ./\ 
 W ) )  =  x )  ->  z  =  ( N  .\/  ( x  ./\  W ) ) ) )   =>    |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W ) 
 /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( P  =/=  Q  /\  ( R  e.  A  /\  -.  R  .<_  W ) ) 
 /\  R  .<_  ( P 
 .\/  Q ) )  ->  [_ R  /  x ]_ O  =  [_ R  /  s ]_ N )
 
Theoremcdlemefs32fva1 29763* Part of proof of Lemma E in [Crawley] p. 113. TODO: FIX COMMENT (Contributed by NM, 29-Mar-2013.)
 |-  B  =  ( Base `  K )   &    |-  .<_  =  ( le `  K )   &    |- 
 .\/  =  ( join `  K )   &    |-  ./\  =  ( meet `  K )   &    |-  A  =  ( Atoms `  K )   &    |-  H  =  ( LHyp `  K )   &    |-  U  =  ( ( P  .\/  Q )  ./\  W )   &    |-  D  =  ( ( t  .\/  U )  ./\  ( Q  .\/  ( ( P  .\/  t )  ./\  W ) ) )   &    |-  E  =  ( ( P  .\/  Q )  ./\  ( D  .\/  ( ( s  .\/  t )  ./\  W ) ) )   &    |-  I  =  (
 iota_ y  e.  B A. t  e.  A  ( ( -.  t  .<_  W  /\  -.  t  .<_  ( P  .\/  Q ) )  ->  y  =  E ) )   &    |-  N  =  if ( s  .<_  ( P  .\/  Q ) ,  I ,  C )   &    |-  O  =  ( iota_ z  e.  B A. s  e.  A  ( ( -.  s  .<_  W  /\  (
 s  .\/  ( x  ./\ 
 W ) )  =  x )  ->  z  =  ( N  .\/  ( x  ./\  W ) ) ) )   &    |-  F  =  ( x  e.  B  |->  if ( ( P  =/=  Q 
 /\  -.  x  .<_  W ) ,  O ,  x ) )   =>    |-  ( ( ( ( K  e.  HL  /\  W  e.  H ) 
 /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) ) 
 /\  ( P  =/=  Q 
 /\  ( R  e.  A  /\  -.  R  .<_  W ) )  /\  R  .<_  ( P  .\/  Q ) )  ->  ( F `
  R )  = 
 [_ R  /  s ]_ N )
 
Theoremcdlemefs31fv1 29764* Value of  ( F `  R ) when  R  .<_  ( P  .\/  Q ). TODO This may be useful for shortening others that now use riotasv 6306 3d . TODO: FIX COMMENT. ***END OF VALUE AT ATOM STUFF TO REPLACE ONES BELOW***
       "cdleme3xsn1aw" decreased using "cdlemefs32sn1aw"
       "cdleme32sn1aw" decreased from 3302 to 36 using "cdlemefs32sn1aw".
       "cdleme32sn2aw" decreased from 1687 to 26 using "cdlemefr32sn2aw".
       "cdleme32snaw" decreased from 376 to 375 using "cdlemefs32sn1aw".
       "cdleme32snaw" decreased from 375 to 368 using "cdlemefr32sn2aw".
       "cdleme35sn3a" decreased from 547 to 523 using "cdleme43frv1sn".
       
(Contributed by NM, 27-Mar-2013.)
 |-  B  =  ( Base `  K )   &    |-  .<_  =  ( le `  K )   &    |- 
 .\/  =  ( join `  K )   &    |-  ./\  =  ( meet `  K )   &    |-  A  =  ( Atoms `  K )   &    |-  H  =  ( LHyp `  K )   &    |-  U  =  ( ( P  .\/  Q )  ./\  W )   &    |-  D  =  ( ( t  .\/  U )  ./\  ( Q  .\/  ( ( P  .\/  t )  ./\  W ) ) )   &    |-  E  =  ( ( P  .\/  Q )  ./\  ( D  .\/  ( ( s  .\/  t )  ./\  W ) ) )   &    |-  I  =  (
 iota_ y  e.  B A. t  e.  A  ( ( -.  t  .<_  W  /\  -.  t  .<_  ( P  .\/  Q ) )  ->  y  =  E ) )   &    |-  N  =  if ( s  .<_  ( P  .\/  Q ) ,  I ,  C )   &    |-  O  =  ( iota_ z  e.  B A. s  e.  A  ( ( -.  s  .<_  W  /\  (
 s  .\/  ( x  ./\ 
 W ) )  =  x )  ->  z  =  ( N  .\/  ( x  ./\  W ) ) ) )   &    |-  F  =  ( x  e.  B  |->  if ( ( P  =/=  Q 
 /\  -.  x  .<_  W ) ,  O ,  x ) )   &    |-  Y  =  ( ( S  .\/  U )  ./\  ( Q  .\/  ( ( P  .\/  S )  ./\  W )
 ) )   &    |-  Z  =  ( ( P  .\/  Q )  ./\  ( Y  .\/  ( ( R  .\/  S )  ./\  W )
 ) )   =>    |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W ) 
 /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( P  =/=  Q  /\  ( R  e.  A  /\  -.  R  .<_  W )  /\  ( S  e.  A  /\  -.  S  .<_  W ) )  /\  ( R 
 .<_  ( P  .\/  Q )  /\  -.  S  .<_  ( P  .\/  Q )
 ) )  ->  ( F `  R )  =  Z )
 
Theoremcdlemefr44 29765* Value of f(r) when r is an atom not under pq, using more compact hypotheses. TODO: eliminate and use cdlemefr45 instead? TODO FIX COMMENT (Contributed by NM, 31-Mar-2013.)
 |-  B  =  ( Base `  K )   &    |-  .<_  =  ( le `  K )   &    |- 
 .\/  =  ( join `  K )   &    |-  ./\  =  ( meet `  K )   &    |-  A  =  ( Atoms `  K )   &    |-  H  =  ( LHyp `  K )   &    |-  U  =  ( ( P  .\/  Q )  ./\  W )   &    |-  D  =  ( ( t  .\/  U )  ./\  ( Q  .\/  ( ( P  .\/  t )  ./\  W ) ) )   &    |-  O  =  (
 iota_ z  e.  B A. s  e.  A  ( ( -.  s  .<_  W  /\  ( s 
 .\/  ( x  ./\  W ) )  =  x )  ->  z  =  ( if ( s  .<_  ( P  .\/  Q ) ,  I ,  [_ s  /  t ]_ D ) 
 .\/  ( x  ./\  W ) ) ) )   &    |-  F  =  ( x  e.  B  |->  if ( ( P  =/=  Q  /\  -.  x  .<_  W ) ,  O ,  x ) )   =>    |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W ) 
 /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( P  =/=  Q  /\  ( R  e.  A  /\  -.  R  .<_  W ) ) 
 /\  -.  R  .<_  ( P  .\/  Q )
 )  ->  ( F `  R )  =  [_ R  /  t ]_ D )
 
Theoremcdlemefs44 29766* Value of fs(r) when r is an atom under pq and s is any atom not under pq, using more compact hypotheses. TODO: eliminate and use cdlemefs45 29769 instead TODO FIX COMMENT (Contributed by NM, 31-Mar-2013.)
 |-  B  =  ( Base `  K )   &    |-  .<_  =  ( le `  K )   &    |- 
 .\/  =  ( join `  K )   &    |-  ./\  =  ( meet `  K )   &    |-  A  =  ( Atoms `  K )   &    |-  H  =  ( LHyp `  K )   &    |-  U  =  ( ( P  .\/  Q )  ./\  W )   &    |-  D  =  ( ( t  .\/  U )  ./\  ( Q  .\/  ( ( P  .\/  t )  ./\  W ) ) )   &    |-  O  =  (
 iota_ z  e.  B A. s  e.  A  ( ( -.  s  .<_  W  /\  ( s 
 .\/  ( x  ./\  W ) )  =  x )  ->  z  =  ( if ( s  .<_  ( P  .\/  Q ) ,  I ,  [_ s  /  t ]_ D ) 
 .\/  ( x  ./\  W ) ) ) )   &    |-  F  =  ( x  e.  B  |->  if ( ( P  =/=  Q  /\  -.  x  .<_  W ) ,  O ,  x ) )   &    |-  E  =  ( ( P  .\/  Q )  ./\  ( D  .\/  ( ( s  .\/  t )  ./\  W ) ) )   &    |-  I  =  (
 iota_ y  e.  B A. t  e.  A  ( ( -.  t  .<_  W  /\  -.  t  .<_  ( P  .\/  Q ) )  ->  y  =  E ) )   =>    |-  ( ( ( ( K  e.  HL  /\  W  e.  H ) 
 /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) ) 
 /\  ( P  =/=  Q 
 /\  ( R  e.  A  /\  -.  R  .<_  W )  /\  ( S  e.  A  /\  -.  S  .<_  W ) ) 
 /\  ( R  .<_  ( P  .\/  Q )  /\  -.  S  .<_  ( P 
 .\/  Q ) ) ) 
 ->  ( F `  R )  =  [_ R  /  s ]_ [_ S  /  t ]_ E )
 
Theoremcdlemefr45 29767* Value of f(r) when r is an atom not under pq, using very compact hypotheses. TODO FIX COMMENT (Contributed by NM, 1-Apr-2013.)
 |-  B  =  ( Base `  K )   &    |-  .<_  =  ( le `  K )   &    |- 
 .\/  =  ( join `  K )   &    |-  ./\  =  ( meet `  K )   &    |-  A  =  ( Atoms `  K )   &    |-  H  =  ( LHyp `  K )   &    |-  U  =  ( ( P  .\/  Q )  ./\  W )   &    |-  D  =  ( ( t  .\/  U )  ./\  ( Q  .\/  ( ( P  .\/  t )  ./\  W ) ) )   &    |-  F  =  ( x  e.  B  |->  if ( ( P  =/=  Q 
 /\  -.  x  .<_  W ) ,  ( iota_ z  e.  B A. s  e.  A  ( ( -.  s  .<_  W  /\  (
 s  .\/  ( x  ./\ 
 W ) )  =  x )  ->  z  =  ( if ( s 
 .<_  ( P  .\/  Q ) ,  ( iota_ y  e.  B A. t  e.  A  ( ( -.  t  .<_  W  /\  -.  t  .<_  ( P  .\/  Q ) )  ->  y  =  E ) ) , 
 [_ s  /  t ]_ D )  .\/  ( x  ./\  W ) ) ) ) ,  x ) )   =>    |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W ) 
 /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( P  =/=  Q  /\  ( R  e.  A  /\  -.  R  .<_  W ) ) 
 /\  -.  R  .<_  ( P  .\/  Q )
 )  ->  ( F `  R )  =  [_ R  /  t ]_ D )
 
Theoremcdlemefr45e 29768* Explicit expansion of cdlemefr45 29767. TODO: use to shorten cdlemefr45 29767 uses? TODO FIX COMMENT (Contributed by NM, 10-Apr-2013.)
 |-  B  =  ( Base `  K )   &    |-  .<_  =  ( le `  K )   &    |- 
 .\/  =  ( join `  K )   &    |-  ./\  =  ( meet `  K )   &    |-  A  =  ( Atoms `  K )   &    |-  H  =  ( LHyp `  K )   &    |-  U  =  ( ( P  .\/  Q )  ./\  W )   &    |-  D  =  ( ( t  .\/  U )  ./\  ( Q  .\/  ( ( P  .\/  t )  ./\  W ) ) )   &    |-  F  =  ( x  e.  B  |->  if ( ( P  =/=  Q 
 /\  -.  x  .<_