HomeHome Metamath Proof Explorer
Theorem List (p. 269 of 309)
< Previous  Next >
Browser slow? Try the
Unicode version.

Mirrors  >  Metamath Home Page  >  MPE Home Page  >  Theorem List Contents  >  Recent Proofs       This page: Page List

Color key:    Metamath Proof Explorer  Metamath Proof Explorer
(1-21328)
  Hilbert Space Explorer  Hilbert Space Explorer
(21329-22851)
  Users' Mathboxes  Users' Mathboxes
(22852-30843)
 

Theorem List for Metamath Proof Explorer - 26801-26900   *Has distinct variable group(s)
TypeLabelDescription
Statement
 
Theoremsbiota1 26801 Theorem *14.25 in [WhiteheadRussell] p. 192. (Contributed by Andrew Salmon, 12-Jul-2011.)
 |-  ( E! x ph  ->  ( A. x ( ph  ->  ps )  <->  [. ( iota x ph )  /  x ]. ps ) )
 
Theoremsbaniota 26802 Theorem *14.26 in [WhiteheadRussell] p. 192. (Contributed by Andrew Salmon, 12-Jul-2011.)
 |-  ( E! x ph  ->  ( E. x ( ph  /\  ps ) 
 <-> 
 [. ( iota x ph )  /  x ]. ps ) )
 
Theoremeubi 26803 Theorem *14.271 in [WhiteheadRussell] p. 192. (Contributed by Andrew Salmon, 11-Jul-2011.)
 |-  ( A. x ( ph  <->  ps )  ->  ( E! x ph  <->  E! x ps )
 )
 
Theoremiotasbcq 26804 Theorem *14.272 in [WhiteheadRussell] p. 193. (Contributed by Andrew Salmon, 11-Jul-2011.)
 |-  ( A. x ( ph  <->  ps )  ->  ( [. ( iota x ph )  /  y ]. ch  <->  [. ( iota x ps )  /  y ]. ch )
 )
 
16.17.5  Set Theory
 
Theoremelnev 26805* Any set that contains one element less than the universe is not equal to it. (Contributed by Andrew Salmon, 16-Jun-2011.)
 |-  ( A  e.  _V  <->  { x  |  -.  x  =  A }  =/=  _V )
 
TheoremrusbcALT 26806 A version of Russell's paradox which is proven using proper substitution. (Contributed by Andrew Salmon, 18-Jun-2011.) (Proof modification is discouraged.)
 |-  { x  |  x  e/  x }  e/  _V
 
Theoremcompel 26807 Equivalence between two ways of saying "is a member of the complement of  A." (Contributed by Andrew Salmon, 15-Jul-2011.)
 |-  ( x  e.  ( _V  \  A )  <->  -.  x  e.  A )
 
Theoremcompeq 26808* Equality between two ways of saying "the complement of  A." (Contributed by Andrew Salmon, 15-Jul-2011.)
 |-  ( _V  \  A )  =  { x  |  -.  x  e.  A }
 
Theoremcompne 26809 The complement of  A is not equal to  A. (Contributed by Andrew Salmon, 15-Jul-2011.)
 |-  ( _V  \  A )  =/= 
 A
 
TheoremcompneOLD 26810 Obsolete proof of compne 26809 as of 28-Jun-2015. (Contributed by Andrew Salmon, 15-Jul-2011.) (Proof modification is discouraged.) (New usage is discouraged.)
 |-  ( _V  \  A )  =/= 
 A
 
Theoremcompab 26811 Two ways of saying "the complement of a class abstraction". (Contributed by Andrew Salmon, 15-Jul-2011.) (Proof shortened by Mario Carneiro, 11-Dec-2016.)
 |-  ( _V  \  { z  | 
 ph } )  =  { z  |  -.  ph
 }
 
Theoremconss34 26812 Contrpositive law for subsets. (Contributed by Andrew Salmon, 15-Jul-2011.)
 |-  ( A  C_  B  <->  ( _V  \  B )  C_  ( _V  \  A ) )
 
Theoremconss2 26813 Contrapositive law for subsets. (Contributed by Andrew Salmon, 15-Jul-2011.)
 |-  ( A  C_  ( _V  \  B ) 
 <->  B  C_  ( _V  \  A ) )
 
Theoremconss1 26814 Contrapositive law for subsets. (Contributed by Andrew Salmon, 15-Jul-2011.)
 |-  (
 ( _V  \  A )  C_  B  <->  ( _V  \  B )  C_  A )
 
Theoremralbidar 26815 More general form of ralbida 2521. (Contributed by Andrew Salmon, 25-Jul-2011.)
 |-  ( ph  ->  A. x  e.  A  ph )   &    |-  ( ( ph  /\  x  e.  A ) 
 ->  ( ps  <->  ch ) )   =>    |-  ( ph  ->  (
 A. x  e.  A  ps 
 <-> 
 A. x  e.  A  ch ) )
 
Theoremrexbidar 26816 More general form of rexbida 2522. (Contributed by Andrew Salmon, 25-Jul-2011.)
 |-  ( ph  ->  A. x  e.  A  ph )   &    |-  ( ( ph  /\  x  e.  A ) 
 ->  ( ps  <->  ch ) )   =>    |-  ( ph  ->  ( E. x  e.  A  ps 
 <-> 
 E. x  e.  A  ch ) )
 
Theoremdropab1 26817 Theorem to aid use of the distinctor reduction theorem with ordered pair class abstraction. (Contributed by Andrew Salmon, 25-Jul-2011.)
 |-  ( A. x  x  =  y  ->  { <. x ,  z >.  |  ph }  =  { <. y ,  z >.  |  ph } )
 
Theoremdropab2 26818 Theorem to aid use of the distinctor reduction theorem with ordered pair class abstraction. (Contributed by Andrew Salmon, 25-Jul-2011.)
 |-  ( A. x  x  =  y  ->  { <. z ,  x >.  |  ph }  =  { <. z ,  y >.  |  ph } )
 
Theoremipo0 26819 If the identity relation partially orders any class, then that class is the null class. (Contributed by Andrew Salmon, 25-Jul-2011.)
 |-  (  _I  Po  A  <->  A  =  (/) )
 
Theoremifr0 26820 A class that is founded by the identity relation is null. (Contributed by Andrew Salmon, 25-Jul-2011.)
 |-  (  _I  Fr  A  <->  A  =  (/) )
 
Theoremordpss 26821 ordelpss 4313 with an antecedent removed. (Contributed by Andrew Salmon, 25-Jul-2011.)
 |-  ( Ord  B  ->  ( A  e.  B  ->  A  C.  B ) )
 
Theoremfvsb 26822* Explicit substitution of a value of a function into a wff. (Contributed by Andrew Salmon, 1-Aug-2011.)
 |-  ( E! y  A F y  ->  ( [. ( F `  A )  /  x ]. ph  <->  E. x ( A. y ( A F y 
 <->  y  =  x ) 
 /\  ph ) ) )
 
Theoremfveqsb 26823* Implicit substitution of a value of a function into a wff. (Contributed by Andrew Salmon, 1-Aug-2011.)
 |-  ( x  =  ( F `  A )  ->  ( ph 
 <->  ps ) )   &    |-  F/ x ps   =>    |-  ( E! y  A F y  ->  ( ps 
 <-> 
 E. x ( A. y ( A F y 
 <->  y  =  x ) 
 /\  ph ) ) )
 
TheoremxrltneNEW 26824 'Less than' implies not equal for extended reals. (Contributed by Andrew Salmon, 11-Nov-2011.)
 |-  (
 ( A  e.  RR*  /\  A  <  B ) 
 ->  A  =/=  B )
 
Theoremxpexb 26825 A Cartesian product exists iff its converse does. Corollary 6.9(1) in [TakeutiZaring] p. 26. (Contributed by Andrew Salmon, 13-Nov-2011.)
 |-  (
 ( A  X.  B )  e.  _V  <->  ( B  X.  A )  e.  _V )
 
Theoremxpexcnv 26826 A condition where the converse of xpex 4708 holds as well. Corollary 6.9(2) in [TakeutiZaring] p. 26. (Contributed by Andrew Salmon, 13-Nov-2011.)
 |-  (
 ( B  =/=  (/)  /\  ( A  X.  B )  e. 
 _V )  ->  A  e.  _V )
 
Theoremtrelpss 26827 An element of a transitive set is a proper subset of it. Theorem 7.2 in [TakeutiZaring] p. 35. Unlike tz7.2 4270, ax-reg 7190 is required for its proof. (Contributed by Andrew Salmon, 13-Nov-2011.)
 |-  (
 ( Tr  A  /\  B  e.  A )  ->  B  C.  A )
 
16.17.6  Arithmetic
 
Theoremaddcomgi 26828 Generalization of commutative law for addition. Simplifies proofs dealing with vectors. However, it is dependent on our particular definition of ordered pair. (Contributed by Andrew Salmon, 28-Jan-2012.) (Revised by Mario Carneiro, 6-May-2015.)
 |-  ( A  +  B )  =  ( B  +  A )
 
16.17.7  Geometry
 
Syntaxcplusr 26829 Introduce the operation of vector addition.
 class  + r
 
Syntaxcminusr 26830 Introduce the operation of vector subtraction.
 class  - r
 
Syntaxctimesr 26831 Introduce the operation of scalar multiplication.
 class  . v
 
Syntaxcptdfc 26832  PtDf is a predicate that is crucial for the definition of lines as well as proving a number of important theorems.
 class  PtDf ( A ,  B )
 
Syntaxcrr3c 26833  RR 3 is a class.
 class  RR 3
 
Syntaxcline3 26834  line 3 is a class.
 class  line 3
 
Definitiondf-addr 26835* Define the operation of vector addition. (Contributed by Andrew Salmon, 27-Jan-2012.)
 |-  + r  =  ( x  e.  _V ,  y  e. 
 _V  |->  ( v  e. 
 RR  |->  ( ( x `
  v )  +  ( y `  v
 ) ) ) )
 
Definitiondf-subr 26836* Define the operation of vector subtraction. (Contributed by Andrew Salmon, 27-Jan-2012.)
 |-  - r  =  ( x  e.  _V ,  y  e. 
 _V  |->  ( v  e. 
 RR  |->  ( ( x `
  v )  -  ( y `  v
 ) ) ) )
 
Definitiondf-mulv 26837* Define the operation of scalar multiplication. (Contributed by Andrew Salmon, 27-Jan-2012.)
 |-  . v  =  ( x  e.  _V ,  y  e. 
 _V  |->  ( v  e. 
 RR  |->  ( x  x.  ( y `  v
 ) ) ) )
 
Theoremaddrval 26838* Value of the operation of vector addition. (Contributed by Andrew Salmon, 27-Jan-2012.)
 |-  (
 ( A  e.  C  /\  B  e.  D ) 
 ->  ( A + r B )  =  (
 v  e.  RR  |->  ( ( A `  v
 )  +  ( B `
  v ) ) ) )
 
Theoremsubrval 26839* Value of the operation of vector subtraction. (Contributed by Andrew Salmon, 27-Jan-2012.)
 |-  (
 ( A  e.  C  /\  B  e.  D ) 
 ->  ( A - r B )  =  (
 v  e.  RR  |->  ( ( A `  v
 )  -  ( B `
  v ) ) ) )
 
Theoremmulvval 26840* Value of the operation of scalar multiplication. (Contributed by Andrew Salmon, 27-Jan-2012.)
 |-  (
 ( A  e.  C  /\  B  e.  D ) 
 ->  ( A . v B )  =  (
 v  e.  RR  |->  ( A  x.  ( B `
  v ) ) ) )
 
Theoremaddrfv 26841 Vector addition at a value. The operation takes each vector  A and  B and forms a new vector whose values are the sum of each of the values of  A and  B. (Contributed by Andrew Salmon, 27-Jan-2012.)
 |-  (
 ( A  e.  E  /\  B  e.  D  /\  C  e.  RR )  ->  ( ( A + r B ) `  C )  =  ( ( A `  C )  +  ( B `  C ) ) )
 
Theoremsubrfv 26842 Vector subtraction at a value. (Contributed by Andrew Salmon, 27-Jan-2012.)
 |-  (
 ( A  e.  E  /\  B  e.  D  /\  C  e.  RR )  ->  ( ( A - r B ) `  C )  =  ( ( A `  C )  -  ( B `  C ) ) )
 
Theoremmulvfv 26843 Scalar multiplication at a value. (Contributed by Andrew Salmon, 27-Jan-2012.)
 |-  (
 ( A  e.  E  /\  B  e.  D  /\  C  e.  RR )  ->  ( ( A . v B ) `  C )  =  ( A  x.  ( B `  C ) ) )
 
Theoremaddrfn 26844 Vector addition produces a function. (Contributed by Andrew Salmon, 27-Jan-2012.)
 |-  (
 ( A  e.  C  /\  B  e.  D ) 
 ->  ( A + r B )  Fn  RR )
 
Theoremsubrfn 26845 Vector subtraction produces a function. (Contributed by Andrew Salmon, 27-Jan-2012.)
 |-  (
 ( A  e.  C  /\  B  e.  D ) 
 ->  ( A - r B )  Fn  RR )
 
Theoremmulvfn 26846 Scalar multiplication producees a function. (Contributed by Andrew Salmon, 27-Jan-2012.)
 |-  (
 ( A  e.  C  /\  B  e.  D ) 
 ->  ( A . v B )  Fn  RR )
 
Theoremaddrcom 26847 Vector addition is commutative. (Contributed by Andrew Salmon, 28-Jan-2012.)
 |-  (
 ( A  e.  C  /\  B  e.  D ) 
 ->  ( A + r B )  =  ( B + r A ) )
 
Definitiondf-ptdf 26848* Define the predicate  PtDf, which is a utility definition used to shorten definitions and simplify proofs. (Contributed by Andrew Salmon, 15-Jul-2012.)
 |-  PtDf ( A ,  B )  =  ( x  e. 
 RR  |->  ( ( ( x . v ( B - r A ) ) +v A ) " { 1 ,  2 ,  3 } ) )
 
Definitiondf-rr3 26849 Define the set of all points  RR 3. We define each point  A as a function to allow the use of vector addition and subtraction as well as scalar multiplication in our proofs. (Contributed by Andrew Salmon, 15-Jul-2012.)
 |-  RR 3  =  ( RR  ^m 
 { 1 ,  2 ,  3 } )
 
Definitiondf-line3 26850* Define the set of all lines. A line is an infinite subset of  RR 3 that satisfies a  PtDf property. (Contributed by Andrew Salmon, 15-Jul-2012.)
 |-  line 3  =  { x  e. 
 ~P RR 3  |  ( 2o  ~<_  x  /\  A. y  e.  x  A. z  e.  x  (
 z  =/=  y  ->  ran  PtDf ( y ,  z
 )  =  x ) ) }
 
16.18  Mathbox for Jarvin Udandy
 
TheoremhirstL-ax3 26851 The third axiom of a system called "L" but proven to be a theorem since set.mm uses a different third axiom. This is named hirst after Holly P. Hirst and Jeffry L. Hirst. Axiom A3 of [Mendelson] p. 35. (Contributed by Jarvin Udandy, 7-Feb-2015.)
 |-  (
 ( -.  ph  ->  -. 
 ps )  ->  (
 ( -.  ph  ->  ps )  ->  ph ) )
 
Theoremax3h 26852 Recovery of ax-3 9 from hirstL-ax3 26851. (Contributed by Jarvin Udandy, 3-Jul-2015.) (Proof modification is discouraged.)
 |-  (
 ( -.  ph  ->  -. 
 ps )  ->  ( ps  ->  ph ) )
 
Theoremnotatnand 26853 Given not a, there exists a proof for not (a and b). (Contributed by Jarvin Udandy, 31-Aug-2016.)
 |-  -.  ph   =>    |-  -.  ( ph  /\  ps )
 
Theoremaistia 26854 Given a is equivalent to T., there exists a proof for a. (Contributed by Jarvin Udandy, 30-Aug-2016.)
 |-  ( ph 
 <->  T.  )   =>    |-  ph
 
Theoremaisfina 26855 Given a is equivalent to F., there exists a proof for not a. (Contributed by Jarvin Udandy, 30-Aug-2016.)
 |-  ( ph 
 <->  F.  )   =>    |- 
 -.  ph
 
Theorembothtbothsame 26856 Given both a,b are equivalent to T., there exists a proof for a is the same as b. (Contributed by Jarvin Udandy, 31-Aug-2016.)
 |-  ( ph 
 <->  T.  )   &    |-  ( ps  <->  T.  )   =>    |-  ( ph  <->  ps )
 
Theorembothfbothsame 26857 Given both a,b are equivalent to F., there exists a proof for a is the same as b. (Contributed by Jarvin Udandy, 31-Aug-2016.)
 |-  ( ph 
 <->  F.  )   &    |-  ( ps  <->  F.  )   =>    |-  ( ph  <->  ps )
 
Theoremaiffbbtat 26858 Given a is equivalent to b, b is equivalent to T. there exists a proof for a is equivalent to T. (Contributed by Jarvin Udandy, 29-Aug-2016.)
 |-  ( ph 
 <->  ps )   &    |-  ( ps  <->  T.  )   =>    |-  ( ph  <->  T.  )
 
Theoremaisbbisfaisf 26859 Given a is equivalent to b, b is equivalent to F. there exists a proof for a is equivalent to F. (Contributed by Jarvin Udandy, 30-Aug-2016.)
 |-  ( ph 
 <->  ps )   &    |-  ( ps  <->  F.  )   =>    |-  ( ph  <->  F.  )
 
Theoremaibnbna 26860 Given a implies b, not b, there exists a proof for not a. (Contributed by Jarvin Udandy, 1-Sep-2016.)
 |-  ( ph  ->  ps )   &    |-  -.  ps   =>    |-  -.  ph
 
Theoremaibnbaif 26861 Given a implies b, not b, there exists a proof for a is F. (Contributed by Jarvin Udandy, 1-Sep-2016.)
 |-  ( ph  ->  ps )   &    |-  -.  ps   =>    |-  ( ph  <->  F.  )
 
Theoremaiffbtbat 26862 Given a is equivalent to b, T. is equivalent to b. there exists a proof for a is equivalent to T. (Contributed by Jarvin Udandy, 29-Aug-2016.)
 |-  ( ph 
 <->  ps )   &    |-  (  T.  <->  ps )   =>    |-  ( ph  <->  T.  )
 
Theoremastbstanbst 26863 Given a is equivalent to T., also given that b is equivalent to T, there exists a proof for a and b is equivalent to T. (Contributed by Jarvin Udandy, 29-Aug-2016.)
 |-  ( ph 
 <->  T.  )   &    |-  ( ps  <->  T.  )   =>    |-  ( ( ph  /\ 
 ps )  <->  T.  )
 
Theoremaisbnaxb 26864 Given a is equivalent to b, there exists a proof for (not (a xor b)) (Contributed by Jarvin Udandy, 28-Aug-2016.)
 |-  ( ph 
 <->  ps )   =>    |- 
 -.  ( ph \/_ ps )
 
Theoremiatbtatnnb 26865 Given a implies b, there exists a proof for a implies not not b (Contributed by Jarvin Udandy, created by Norman Megill 2-Sep-2016.)
 |-  ( ph  ->  ps )   =>    |-  ( ph  ->  -.  -.  ps )
 
Theorematbiffatnnb 26866 If a implies b, is is implied a implies not not b (Contributed by Jarvin Udandy, 28-Aug-2016.)
 |-  (
 ( ph  ->  ps )  ->  ( ph  ->  -.  -.  ps ) )
 
Theorembisaiaisb 26867 Application of bicom1 with a, b swapped. (Contributed by Jarvin Udandy 31-Aug-2016.)
 |-  (
 ( ps  <->  ph )  ->  ( ph 
 <->  ps ) )
 
Theorematbiffatnnbalt 26868 If a implies b, it is implied a implies not not b (Contributed by Jarvin Udandy, but created by Mario Carnerio, shorter proof 29-Aug-2016.)
 |-  (
 ( ph  ->  ps )  ->  ( ph  ->  -.  -.  ps ) )
 
Theoremabnotbtaxb 26869 Assuming a, not b, there exists a proof a-xor-b.) (Contributed by Jarvin Udandy, 31-Aug-2016.)
 |-  ph   &    |-  -.  ps   =>    |-  ( ph \/_ ps )
 
Theoremabnotataxb 26870 Assuming not a, b, there exists a proof a-xor-b.) (Contributed by Jarvin Udandy, 31-Aug-2016.)
 |-  -.  ph   &    |-  ps   =>    |-  ( ph \/_ ps )
 
Theoremconimpf 26871 Assuming a, not b, and a implies b, there exists a proof that a is false.) (Contributed by Jarvin Udandy, 28-Aug-2016.)
 |-  ph   &    |-  -.  ps   &    |-  ( ph  ->  ps )   =>    |-  ( ph  <->  F.  )
 
Theoremconimpfalt 26872 Assuming a, not b, and a implies b, there exists a proof that a is false.) (Contributed by Jarvin Udandy, but created by Mario Carneiro, shorter proof 29-Aug-2016.)
 |-  ph   &    |-  -.  ps   &    |-  ( ph  ->  ps )   =>    |-  ( ph  <->  F.  )
 
Theoremaistbisfiaxb 26873 Given a is equivalent to T., Given b is equivalent to F. there exists a proof for a-xor-b. (Contributed by Jarvin Udandy, 31-Aug-2016.)
 |-  ( ph 
 <->  T.  )   &    |-  ( ps  <->  F.  )   =>    |-  ( ph \/_ ps )
 
Theoremaisfbistiaxb 26874 Given a is equivalent to F., Given b is equivalent to T., there exists a proof for a-xor-b. (Contributed by Jarvin Udandy, 31-Aug-2016.)
 |-  ( ph 
 <->  F.  )   &    |-  ( ps  <->  T.  )   =>    |-  ( ph \/_ ps )
 
Theoremdandysum 26875 Given the right hypotheses we can prove a dandysum of 2+2=4 Values that when added exceed a 4bit value, are not supported. (Contributed by Jarvin Udandy, 2-Sep-2016.)
 |-  ( ph 
 <->  ( th  /\  ta ) )   &    |-  ( ps  <->  ( et  /\  ze ) )   &    |-  ( ch  <->  ( si  /\  rh ) )   &    |-  ( th  <->  F.  )   &    |-  ( ta  <->  F.  )   &    |-  ( et  <->  T.  )   &    |-  ( ze 
 <->  T.  )   &    |-  ( si  <->  F.  )   &    |-  ( rh  <->  F.  )   &    |-  ( mu  <->  F.  )   &    |-  ( la  <->  F.  )   &    |-  ( ka  <->  ( ( th \/_ ta ) \/_ ( th  /\  ta ) ) )   &    |-  (jph  <->  (
 ( et \/_ ze )  \/  ph ) )   &    |-  (jps  <->  ( ( si \/_ rh )  \/  ps ) )   &    |-  (jch  <->  ( ( mu
 \/_ la )  \/  ch ) )   &    |-  (jth  <->  F.  )   &    |-  (jta  <->  F.  )   &    |-  (jet  <->  T.  )   &    |-  (jze  <->  F.  )   =>    |-  ( ( ( (jth  <->  ka )  /\  (jta  <-> jph
 ) )  /\  (jet  <-> jps
 ) )  /\  (jze  <-> jch
 ) )
 
16.19  Mathbox for David A. Wheeler

This is the mathbox of David A. Wheeler, dwheeler at dwheeler dot com. Among other things, I have added a number of formal definitions for widely-used functions, e.g., those defined in ISO 80000-2:2009(E) Quantities and units - Part 2: Mathematical signs and symbols used in the natural sciences and technology and the NIST Digital Library of Mathematical Functions http://dlmf.nist.gov/.

 
16.19.1  Natural deduction
 
Theorem19.8ad 26876 If a wff is true, it is true for at least one instance. Deductive form of 19.8a 1758. (Contributed by DAW, 13-Feb-2017.)
 |-  ( ph  ->  ps )   =>    |-  ( ph  ->  E. x ps )
 
Theoremsbidd 26877 An identity theorem for substitution. See sbid 1895. See Remark 9.1 in [Megill] p. 447 (p. 15 of the preprint). (Contributed by DAW, 18-Feb-2017.)
 |-  ( ph  ->  [ x  /  x ] ps )   =>    |-  ( ph  ->  ps )
 
Theoremsbidd-misc 26878 An identity theorem for substitution. See sbid 1895. See Remark 9.1 in [Megill] p. 447 (p. 15 of the preprint). (Contributed by DAW, 18-Feb-2017.)
 |-  (
 ( ph  ->  [ x  /  x ] ps )  <->  (
 ph  ->  ps ) )
 
16.19.2  Greater than, greater than or equal to.

As a stylistic issue, set.mm prefers 'less than' instead of 'greater than' to reduce the number of conversion steps. Here we formally define the widely-used relations 'greater than' and 'greater than or equal to', so that we have formal definitions of them, as well as a few related theorems.

 
Syntaxcge-real 26879 Extend wff notation to include the 'greater than or equal to' relation, see df-gte 26881.
 class  >_
 
Syntaxcgt 26880 Extend wff notation to include the 'greater than' relation, see df-gt 26882.
 class  >
 
Definitiondf-gte 26881 Define the 'greater than or equal' predicate over the reals. Defined in ISO 80000-2:2009(E) operation 2-7.10. It is used as a primitive in the "NIST Digital Library of Mathematical Functions" , front introduction, "Common Notations and Definitions" section at http://dlmf.nist.gov/front/introduction#Sx4. This relation is merely the converse of the 'less than or equal to' relation defined by df-le 8753.

We do not write this as  ( x  >_  y  <->  y  <_  x ), and similarly we do not write ` > ` as  ( x  >  y  <->  y  <  x ), because these are not definitional axioms as understood by mmj2 (those definitions will be flagged as being "potentially non-conservative"). We could write them this way:  |-  >  =  { <. x ,  y
>.  |  ( (
x  e.  RR*  /\  y  e.  RR* )  /\  y  <  x ) } and  |-  >_  =  { <. x ,  y
>.  |  ( (
x  e.  RR*  /\  y  e.  RR* )  /\  y  <_  x ) } but these are very complicated. This definition of  >_, and the similar one for  > (df-gt 26882), are a bit strange when you see them for the first time, but these definitions are much simpler for us to process and are clearly conservative definitions. (My thanks to Mario Carneiro for pointing out this simpler approach.) See gte-lte 26883 for a more conventional expression of the relationship between  < and  >. As a stylistic issue, set.mm prefers 'less than' instead of 'greater than' to reduce the number of conversion steps. Thus, we discourage its use, but include its definition so that there is a formal definition of this symbol.

(Contributed by David A. Wheeler, 10-May-2015.) (New usage is discouraged.)

 |-  >_  =  `'  <_
 
Definitiondf-gt 26882 The 'greater than' relation is merely the converse of the 'less than or equal to' relation defined by df-lt 8630. Defined in ISO 80000-2:2009(E) operation 2-7.12. See df-gte 26881 for a discussion on why this approach is used for the definition. See gt-lt 26884 and gt-lth 26886 for more conventional expression of the relationship between  < and  >.

As a stylistic issue, set.mm prefers 'less than or equal' instead of 'greater than or equal' to reduce the number of conversion steps. Thus, we discourage its use, but include its definition so that there is a formal definition of this symbol.

(Contributed by David A. Wheeler, 19-Apr-2015.) (New usage is discouraged.)

 |-  >  =  `'  <
 
Theoremgte-lte 26883 Simple relationship between  <_ and  >_. (Contributed by David A. Wheeler, 10-May-2015.) (New usage is discouraged.)
 |-  (
 ( A  e.  _V  /\  B  e.  _V )  ->  ( A  >_  B  <->  B 
 <_  A ) )
 
Theoremgt-lt 26884 Simple relationship between  < and  >. (Contributed by David A. Wheeler, 19-Apr-2015.) (New usage is discouraged.)
 |-  (
 ( A  e.  _V  /\  B  e.  _V )  ->  ( A  >  B  <->  B  <  A ) )
 
Theoremgte-lteh 26885 Relationship between  <_ and  >_ using hypotheses. (Contributed by David A. Wheeler, 10-May-2015.) (New usage is discouraged.)
 |-  A  e.  _V   &    |-  B  e.  _V   =>    |-  ( A  >_  B  <->  B  <_  A )
 
Theoremgt-lth 26886 Relationship between  < and  > using hypotheses. (Contributed by David A. Wheeler, 19-Apr-2015.) (New usage is discouraged.)
 |-  A  e.  _V   &    |-  B  e.  _V   =>    |-  ( A  >  B  <->  B  <  A )
 
Theoremex-gt 26887 Simple example of  >, in this case, 0 is not greater than 0. This is useful as an example, and helps us gain confidence that we've correctly defined the symbol. (Contributed by David A. Wheeler, 1-Jan-2017.) (New usage is discouraged.)
 |-  -.  0  >  0
 
Theoremex-gte 26888 Simple example of  >_, in this case, 0 is greater than or equal to 0. This is useful as an example, and helps us gain confidence that we've correctly defined the symbol. (Contributed by David A. Wheeler, 1-Jan-2017.) (New usage is discouraged.)
 |-  0  >_  0
 
16.19.3  Hyperbolic trig functions

It is a convention of set.mm to not use sinh and so on directly, and instead of use expansions such as  ( cos `  ( _i  x.  x ) ). However, I believe it's important to give formal definitions for these conventional functions as they are typically used, so here they are. A few related identities are also proved.

 
Syntaxcsinh 26889 Extend class notation to include the hyperbolic sine function, see df-sinh 26892.
 class sinh
 
Syntaxccosh 26890 Extend class notation to include the hyperbolic cosine function. see df-cosh 26893.
 class cosh
 
Syntaxctanh 26891 Extend class notation to include the hyperbolic tangent function, see df-tanh 26894.
 class tanh
 
Definitiondf-sinh 26892 Define the hyperbolic sine function (sinh). We define it this way for cmpt 3974, which requires the form  (
x  e.  A  |->  B ). See sinhval-named 26895 for a simple way to evaluate it. We define this function by dividing by  _i, which uses fewer operations than many conventional definitions (and thus is more convenient to use in metamath). See sinh-conventional 26898 for a justification that our definition is the same as the conventional definition of sinh used in other sources. (Contributed by David A. Wheeler, 20-Apr-2015.)
 |- sinh  =  ( x  e.  CC  |->  ( ( sin `  ( _i  x.  x ) ) 
 /  _i ) )
 
Definitiondf-cosh 26893 Define the hyperbolic cosine function (cosh). We define it this way for cmpt 3974, which requires the form  (
x  e.  A  |->  B ). (Contributed by David A. Wheeler, 10-May-2015.)
 |- cosh  =  ( x  e.  CC  |->  ( cos `  ( _i  x.  x ) ) )
 
Definitiondf-tanh 26894 Define the hyperbolic tangent function (tanh). We define it this way for cmpt 3974, which requires the form  (
x  e.  A  |->  B ). (Contributed by David A. Wheeler, 10-May-2015.)
 |- tanh  =  ( x  e.  ( `'cosh " ( CC  \  { 0 } )
 )  |->  ( ( tan `  ( _i  x.  x ) )  /  _i ) )
 
Theoremsinhval-named 26895 Value of the named sinh function. Here we show the simple conversion to the conventional form used in set.mm, using the definition given by df-sinh 26892. See sinhval 12308 for a theorem to convert this further. See sinh-conventional 26898 for a justification that our definition is the same as the conventional definition of sinh used in other sources. (Contributed by David A. Wheeler, 20-Apr-2015.)
 |-  ( A  e.  CC  ->  (sinh `  A )  =  ( ( sin `  ( _i  x.  A ) ) 
 /  _i ) )
 
Theoremcoshval-named 26896 Value of the named cosh function. Here we show the simple conversion to the conventional form used in set.mm, using the definition given by df-cosh 26893. See coshval 12309 for a theorem to convert this further. (Contributed by David A. Wheeler, 10-May-2015.)
 |-  ( A  e.  CC  ->  (cosh `  A )  =  ( cos `  ( _i  x.  A ) ) )
 
Theoremtanhval-named 26897 Value of the named tanh function. Here we show the simple conversion to the conventional form used in set.mm, using the definition given by df-tanh 26894. (Contributed by David A. Wheeler, 10-May-2015.)
 |-  ( A  e.  ( `'cosh " ( CC  \  {
 0 } ) ) 
 ->  (tanh `  A )  =  ( ( tan `  ( _i  x.  A ) ) 
 /  _i ) )
 
Theoremsinh-conventional 26898 Conventional definition of sinh. Here we show that the sinh definition we're using has the same meaning as the conventional definition used in some other sources. We choose a slightly different definition of sinh because it has fewer operations, and thus is more convenient to manipulate using metamath. (Contributed by David A. Wheeler, 10-May-2015.)
 |-  ( A  e.  CC  ->  (sinh `  A )  =  (
 -u _i  x.  ( sin `  ( _i  x.  A ) ) ) )
 
Theoremsinhpcosh 26899 Prove that  (sinh `  A
)  +  (cosh `  A )  =  ( exp `  A ) using the conventional hyperbolic trig functions. (Contributed by David A. Wheeler, 27-May-2015.)
 |-  ( A  e.  CC  ->  ( (sinh `  A )  +  (cosh `  A )
 )  =  ( exp `  A ) )
 
16.19.4  Reciprocal trig functions (sec, csc, cot)

Define the traditional reciprocal trigonometric functions secant (sec), cosecant (csc), and cotangent (cos), along with various identities involving them.

 
Syntaxcsec 26900 Extend class notation to include the secant function, see df-sec 26903.
 class  sec
    < Previous  Next >

Page List
Jump to page: Contents  1 1-100 2 101-200 3 201-300 4 301-400 5 401-500 6 501-600 7 601-700 8 701-800 9 801-900 10 901-1000 11 1001-1100 12 1101-1200 13 1201-1300 14 1301-1400 15 1401-1500 16 1501-1600 17 1601-1700 18 1701-1800 19 1801-1900 20 1901-2000 21 2001-2100 22 2101-2200 23 2201-2300 24 2301-2400 25 2401-2500 26 2501-2600 27 2601-2700 28 2701-2800 29 2801-2900 30 2901-3000 31 3001-3100 32 3101-3200 33 3201-3300 34 3301-3400 35 3401-3500 36 3501-3600 37 3601-3700 38 3701-3800 39 3801-3900 40 3901-4000 41 4001-4100 42 4101-4200 43 4201-4300 44 4301-4400 45 4401-4500 46 4501-4600 47 4601-4700 48 4701-4800 49 4801-4900 50 4901-5000 51 5001-5100 52 5101-5200 53 5201-5300 54 5301-5400 55 5401-5500 56 5501-5600 57 5601-5700 58 5701-5800 59 5801-5900 60 5901-6000 61 6001-6100 62 6101-6200 63 6201-6300 64 6301-6400 65 6401-6500 66 6501-6600 67 6601-6700 68 6701-6800 69 6801-6900 70 6901-7000 71 7001-7100 72 7101-7200 73 7201-7300 74 7301-7400 75 7401-7500 76 7501-7600 77 7601-7700 78 7701-7800 79 7801-7900 80 7901-8000 81 8001-8100 82 8101-8200 83 8201-8300 84 8301-8400 85 8401-8500 86 8501-8600 87 8601-8700 88 8701-8800 89 8801-8900 90 8901-9000 91 9001-9100 92 9101-9200 93 9201-9300 94 9301-9400 95 9401-9500 96 9501-9600 97 9601-9700 98 9701-9800 99 9801-9900 100 9901-10000 101 10001-10100 102 10101-10200 103 10201-10300 104 10301-10400 105 10401-10500 106 10501-10600 107 10601-10700 108 10701-10800 109 10801-10900 110 10901-11000 111 11001-11100 112 11101-11200 113 11201-11300 114 11301-11400 115 11401-11500 116 11501-11600 117 11601-11700 118 11701-11800 119 11801-11900 120 11901-12000 121 12001-12100 122 12101-12200 123 12201-12300 124 12301-12400 125 12401-12500 126 12501-12600 127 12601-12700 128 12701-12800 129 12801-12900 130 12901-13000 131 13001-13100 132 13101-13200 133 13201-13300 134 13301-13400 135 13401-13500 136 13501-13600 137 13601-13700 138 13701-13800 139 13801-13900 140 13901-14000 141 14001-14100 142 14101-14200 143 14201-14300 144 14301-14400 145 14401-14500 146 14501-14600 147 14601-14700 148 14701-14800 149 14801-14900 150 14901-15000 151 15001-15100 152 15101-15200 153 15201-15300 154 15301-15400 155 15401-15500 156 15501-15600 157 15601-15700 158 15701-15800 159 15801-15900 160 15901-16000 161 16001-16100 162 16101-16200 163 16201-16300 164 16301-16400 165 16401-16500 166 16501-16600 167 16601-16700 168 16701-16800 169 16801-16900 170 16901-17000 171 17001-17100 172 17101-17200 173 17201-17300 174 17301-17400 175 17401-17500 176 17501-17600 177 17601-17700 178 17701-17800 179 17801-17900 180 17901-18000 181 18001-18100 182 18101-18200 183 18201-18300 184 18301-18400 185 18401-18500 186 18501-18600 187 18601-18700 188 18701-18800 189 18801-18900 190 18901-19000 191 19001-19100 192 19101-19200 193 19201-19300 194 19301-19400 195 19401-19500 196 19501-19600 197 19601-19700 198 19701-19800 199 19801-19900 200 19901-20000 201 20001-20100 202 20101-20200 203 20201-20300 204 20301-20400 205 20401-20500 206 20501-20600 207 20601-20700 208 20701-20800 209 20801-20900 210 20901-21000 211 21001-21100 212 21101-21200 213 21201-21300 214 21301-21400 215 21401-21500 216 21501-21600 217 21601-21700 218 21701-21800 219 21801-21900 220 21901-22000 221 22001-22100 222 22101-22200 223 22201-22300 224 22301-22400 225 22401-22500 226 22501-22600 227 22601-22700 228 22701-22800 229 22801-22900 230 22901-23000 231 23001-23100 232 23101-23200 233 23201-23300 234 23301-23400 235 23401-23500 236 23501-23600 237 23601-23700 238 23701-23800 239 23801-23900 240 23901-24000 241 24001-24100 242 24101-24200 243 24201-24300 244 24301-24400 245 24401-24500 246 24501-24600 247 24601-24700 248 24701-24800 249 24801-24900 250 24901-25000 251 25001-25100 252 25101-25200 253 25201-25300 254 25301-25400 255 25401-25500 256 25501-25600 257 25601-25700 258 25701-25800 259 25801-25900 260 25901-26000 261 26001-26100 262 26101-26200 263 26201-26300 264 26301-26400 265 26401-26500 266 26501-26600 267 26601-26700 268 26701-26800 269 26801-26900 270 26901-27000 271 27001-27100 272 27101-27200 273 27201-27300 274 27301-27400 275 27401-27500 276 27501-27600 277 27601-27700 278 27701-27800 279 27801-27900 280 27901-28000 281 28001-28100 282 28101-28200 283 28201-28300 284 28301-28400 285 28401-28500 286 28501-28600 287 28601-28700 288 28701-28800 289 28801-28900 290 28901-29000 291 29001-29100 292 29101-29200 293 29201-29300 294 29301-29400 295 29401-29500 296 29501-29600 297 29601-29700 298 29701-29800 299 29801-29900 300 29901-30000 301 30001-30100 302 30101-30200 303 30201-30300 304 30301-30400 305 30401-30500 306 30501-30600 307 30601-30700 308 30701-30800 309 30801-30843
  Copyright terms: Public domain < Previous  Next >