Home Metamath Proof ExplorerTheorem List (p. 21 of 309) < Previous  Next > Browser slow? Try the Unicode version.

 Color key: Metamath Proof Explorer (1-21328) Hilbert Space Explorer (21329-22851) Users' Mathboxes (22852-30843)

Theorem List for Metamath Proof Explorer - 2001-2100   *Has distinct variable group(s)
TypeLabelDescription
Statement

Theorema16g-o 2001* A generalization of axiom ax-16 1926. Version of a16g 2000 using ax-10o 1835. (Contributed by NM, 5-Aug-1993.) (Proof shortened by Andrew Salmon, 25-May-2011.)

Theorema16gb 2002* A generalization of axiom ax-16 1926. (Contributed by NM, 5-Aug-1993.)

Theorema16nf 2003* If dtru 4095 is false, then there is only one element in the universe, so everything satisfies . (Contributed by Mario Carneiro, 7-Oct-2016.)

Theoremalbidv 2004* Formula-building rule for universal quantifier (deduction rule). (Contributed by NM, 5-Aug-1993.)

Theoremexbidv 2005* Formula-building rule for existential quantifier (deduction rule). (Contributed by NM, 5-Aug-1993.)

Theorem2albidv 2006* Formula-building rule for 2 universal quantifiers (deduction rule). (Contributed by NM, 4-Mar-1997.)

Theorem2exbidv 2007* Formula-building rule for 2 existential quantifiers (deduction rule). (Contributed by NM, 1-May-1995.)

Theorem3exbidv 2008* Formula-building rule for 3 existential quantifiers (deduction rule). (Contributed by NM, 1-May-1995.)

Theorem4exbidv 2009* Formula-building rule for 4 existential quantifiers (deduction rule). (Contributed by NM, 3-Aug-1995.)

Theorem19.9v 2010* Special case of Theorem 19.9 of [Margaris] p. 89. (Contributed by NM, 28-May-1995.)

Theorem19.21v 2011* Special case of Theorem 19.21 of [Margaris] p. 90. Notational convention: We sometimes suffix with "v" the label of a theorem eliminating a hypothesis such as in 19.21 1771 via the use of distinct variable conditions combined with nfv 1629. Conversely, we sometimes suffix with "f" the label of a theorem introducing such a hypothesis to eliminate the need for the distinct variable condition; e.g. euf 2120 derived from df-eu 2118. The "f" stands for "not free in" which is less restrictive than "does not occur in." (Contributed by NM, 5-Aug-1993.)

Theoremalrimiv 2012* Inference from Theorem 19.21 of [Margaris] p. 90. (Contributed by NM, 5-Aug-1993.)

Theoremalrimivv 2013* Inference from Theorem 19.21 of [Margaris] p. 90. (Contributed by NM, 31-Jul-1995.)

Theoremalrimdv 2014* Deduction from Theorem 19.21 of [Margaris] p. 90. (Contributed by NM, 10-Feb-1997.)

Theoremnfdv 2015* Apply the definition of not-free in a context. (Contributed by Mario Carneiro, 11-Aug-2016.)

Theorem2ax17 2016* Quantification of two variables over a formula in which they do not occur. (Contributed by Alan Sare, 12-Apr-2011.)

Theoremalimdv 2017* Deduction from Theorem 19.20 of [Margaris] p. 90. (Contributed by NM, 3-Apr-1994.)

Theoremeximdv 2018* Deduction from Theorem 19.22 of [Margaris] p. 90. (Contributed by NM, 27-Apr-1994.)

Theorem2alimdv 2019* Deduction from Theorem 19.22 of [Margaris] p. 90. (Contributed by NM, 27-Apr-2004.)

Theorem2eximdv 2020* Deduction from Theorem 19.22 of [Margaris] p. 90. (Contributed by NM, 3-Aug-1995.)

Theorem19.23v 2021* Special case of Theorem 19.23 of [Margaris] p. 90. (Contributed by NM, 28-Jun-1998.)

Theorem19.23vv 2022* Theorem 19.23 of [Margaris] p. 90 extended to two variables. (Contributed by NM, 10-Aug-2004.)

Theoremexlimiv 2023* Inference from Theorem 19.23 of [Margaris] p. 90.

This inference, along with our many variants such as rexlimdv 2628, is used to implement a metatheorem called "Rule C" that is given in many logic textbooks. See, for example, Rule C in [Mendelson] p. 81, Rule C in [Margaris] p. 40, or Rule C in Hirst and Hirst's A Primer for Logic and Proof p. 59 (PDF p. 65) at http://www.mathsci.appstate.edu/~jlh/primer/hirst.pdf.

In informal proofs, the statement "Let be an element such that..." almost always means an implicit application of Rule C.

In essence, Rule C states that if we can prove that some element exists satisfying a wff, i.e. where has free, then we can use as a hypothesis for the proof where is a new (ficticious) constant not appearing previously in the proof, nor in any axioms used, nor in the theorem to be proved. The purpose of Rule C is to get rid of the existential quantifier.

We cannot do this in Metamath directly. Instead, we use the original (containing ) as an antecedent for the main part of the proof. We eventually arrive at where is the theorem to be proved and does not contain . Then we apply exlimiv 2023 to arrive at . Finally, we separately prove and detach it with modus ponens ax-mp 10 to arrive at the final theorem . (Contributed by NM, 5-Aug-1993.)

Theorempm11.53 2024* Theorem *11.53 in [WhiteheadRussell] p. 164. (Contributed by Andrew Salmon, 24-May-2011.)

Theoremexlimivv 2025* Inference from Theorem 19.23 of [Margaris] p. 90. (Contributed by NM, 1-Aug-1995.)

Theoremexlimdvv 2026* Deduction from Theorem 19.23 of [Margaris] p. 90. (Contributed by NM, 31-Jul-1995.)

Theorem19.27v 2027* Theorem 19.27 of [Margaris] p. 90. (Contributed by NM, 3-Jun-2004.)

Theorem19.28v 2028* Theorem 19.28 of [Margaris] p. 90. (Contributed by NM, 25-Mar-2004.)

Theorem19.36v 2029* Special case of Theorem 19.36 of [Margaris] p. 90. (Contributed by NM, 18-Aug-1993.)

Theorem19.36aiv 2030* Inference from Theorem 19.36 of [Margaris] p. 90. (Contributed by NM, 5-Aug-1993.)

Theorem19.12vv 2031* Special case of 19.12 1766 where its converse holds. (Contributed by NM, 18-Jul-2001.) (Revised by Andrew Salmon, 11-Jul-2011.)

Theorem19.37v 2032* Special case of Theorem 19.37 of [Margaris] p. 90. (Contributed by NM, 5-Aug-1993.)

Theorem19.37aiv 2033* Inference from Theorem 19.37 of [Margaris] p. 90. (Contributed by NM, 5-Aug-1993.)

Theorem19.41v 2034* Special case of Theorem 19.41 of [Margaris] p. 90. (Contributed by NM, 5-Aug-1993.)

Theorem19.41vv 2035* Theorem 19.41 of [Margaris] p. 90 with 2 quantifiers. (Contributed by NM, 30-Apr-1995.)

Theorem19.41vvv 2036* Theorem 19.41 of [Margaris] p. 90 with 3 quantifiers. (Contributed by NM, 30-Apr-1995.)

Theorem19.41vvvv 2037* Theorem 19.41 of [Margaris] p. 90 with 4 quantifiers. (Contributed by FL, 14-Jul-2007.)

Theorem19.42v 2038* Special case of Theorem 19.42 of [Margaris] p. 90. (Contributed by NM, 5-Aug-1993.)

Theoremexdistr 2039* Distribution of existential quantifiers. (Contributed by NM, 9-Mar-1995.)

Theorem19.42vv 2040* Theorem 19.42 of [Margaris] p. 90 with 2 quantifiers. (Contributed by NM, 16-Mar-1995.)

Theorem19.42vvv 2041* Theorem 19.42 of [Margaris] p. 90 with 3 quantifiers. (Contributed by NM, 21-Sep-2011.)

Theoremexdistr2 2042* Distribution of existential quantifiers. (Contributed by NM, 17-Mar-1995.)

Theorem3exdistr 2043* Distribution of existential quantifiers. (Contributed by NM, 9-Mar-1995.) (Proof shortened by Andrew Salmon, 25-May-2011.)

Theorem4exdistr 2044* Distribution of existential quantifiers. (Contributed by NM, 9-Mar-1995.)

Theoremcbvalv 2045* Rule used to change bound variables, using implicit substitution. (Contributed by NM, 5-Aug-1993.)

Theoremcbvexv 2046* Rule used to change bound variables, using implicit substitution. (Contributed by NM, 5-Aug-1993.)

Theoremcbval2 2047* Rule used to change bound variables, using implicit substitution. (Contributed by NM, 22-Dec-2003.) (Revised by Mario Carneiro, 6-Oct-2016.)

Theoremcbvex2 2048* Rule used to change bound variables, using implicit substitution. (Contributed by NM, 14-Sep-2003.) (Revised by Mario Carneiro, 6-Oct-2016.)

Theoremcbval2v 2049* Rule used to change bound variables, using implicit substitution. (Contributed by NM, 4-Feb-2005.)

Theoremcbvex2v 2050* Rule used to change bound variables, using implicit substitution. (Contributed by NM, 26-Jul-1995.)

Theoremcbvald 2051* Deduction used to change bound variables, using implicit substitution, particularly useful in conjunction with dvelim 2092. (Contributed by NM, 2-Jan-2002.) (Revised by Mario Carneiro, 6-Oct-2016.)

Theoremcbvexd 2052* Deduction used to change bound variables, using implicit substitution, particularly useful in conjunction with dvelim 2092. (Contributed by NM, 2-Jan-2002.) (Revised by Mario Carneiro, 6-Oct-2016.)

Theoremcbvex4v 2053* Rule used to change bound variables, using implicit substitution. (Contributed by NM, 26-Jul-1995.)

Theoremeean 2054 Rearrange existential quantifiers. (Contributed by NM, 27-Oct-2010.) (Revised by Mario Carneiro, 6-Oct-2016.)

Theoremeeanv 2055* Rearrange existential quantifiers. (Contributed by NM, 26-Jul-1995.)

Theoremeeeanv 2056* Rearrange existential quantifiers. (Contributed by NM, 26-Jul-1995.) (Proof shortened by Andrew Salmon, 25-May-2011.)

Theoremee4anv 2057* Rearrange existential quantifiers. (Contributed by NM, 31-Jul-1995.)

Theoremnexdv 2058* Deduction for generalization rule for negated wff. (Contributed by NM, 5-Aug-1993.)

Theoremchvarv 2059* Implicit substitution of for into a theorem. (Contributed by NM, 20-Apr-1994.)

Theoremcleljust 2060* When the class variables in definition df-clel 2249 are replaced with set variables, this theorem of predicate calculus is the result. This theorem provides part of the justification for the consistency of that definition, which "overloads" the set variables in wel 1622 with the class variables in wcel 1621. Note: This proof is referenced on the Metamath Proof Explorer Home Page and shouldn't be changed. (Contributed by NM, 28-Jan-2004.) (Revised by NM, 10-Jan-2017.) (Proof modification is discouraged.)

1.6.5  More substitution theorems

Theoremequsb3lem 2061* Lemma for equsb3 2062. (Contributed by Raph Levien and FL, 4-Dec-2005.) (Proof shortened by Andrew Salmon, 14-Jun-2011.)

Theoremequsb3 2062* Substitution applied to an atomic wff. (Contributed by Raph Levien and FL, 4-Dec-2005.)

Theoremelsb3 2063* Substitution applied to an atomic membership wff. (Contributed by NM, 7-Nov-2006.) (Proof shortened by Andrew Salmon, 14-Jun-2011.)

Theoremelsb4 2064* Substitution applied to an atomic membership wff. (Contributed by Rodolfo Medina, 3-Apr-2010.) (Proof shortened by Andrew Salmon, 14-Jun-2011.)

Theoremhbs1 2065* is not free in when and are distinct. (Contributed by NM, 5-Aug-1993.)

Theoremnfs1v 2066* is not free in when and are distinct. (Contributed by Mario Carneiro, 11-Aug-2016.)

Theoremsbhb 2067* Two ways of expressing " is (effectively) not free in ." (Contributed by NM, 29-May-2009.)

Theoremsbnf2 2068* Two ways of expressing " is (effectively) not free in ." (Contributed by Gérard Lang, 14-Nov-2013.) (Revised by Mario Carneiro, 6-Oct-2016.)

Theoremnfsb 2069* If is not free in , it is not free in when and are distinct. (Contributed by Mario Carneiro, 11-Aug-2016.)

Theoremhbsb 2070* If is not free in , it is not free in when and are distinct. (Contributed by NM, 12-Aug-1993.)

Theoremnfsbd 2071* Deduction version of nfsb 2069. (Contributed by NM, 15-Feb-2013.)

Theorem2sb5 2072* Equivalence for double substitution. (Contributed by NM, 3-Feb-2005.)

Theorem2sb6 2073* Equivalence for double substitution. (Contributed by NM, 3-Feb-2005.)

Theoremsbcom2 2074* Commutativity law for substitution. Used in proof of Theorem 9.7 of [Megill] p. 449 (p. 16 of the preprint). (Contributed by NM, 27-May-1997.)

Theorempm11.07 2075* Theorem *11.07 in [WhiteheadRussell] p. 159. (Contributed by Andrew Salmon, 17-Jun-2011.)

Theoremsb6a 2076* Equivalence for substitution. (Contributed by NM, 5-Aug-1993.)

Theorem2sb5rf 2077* Reversed double substitution. (Contributed by NM, 3-Feb-2005.) (Revised by Mario Carneiro, 6-Oct-2016.)

Theorem2sb6rf 2078* Reversed double substitution. (Contributed by NM, 3-Feb-2005.) (Revised by Mario Carneiro, 6-Oct-2016.)

Theoremdfsb7 2079* An alternate definition of proper substitution df-sb 1883. By introducing a dummy variable in the definiens, we are able to eliminate any distinct variable restrictions among the variables , , and of the definiendum. No distinct variable conflicts arise because effectively insulates from . To achieve this, we use a chain of two substitutions in the form of sb5 1993, first for then for . Compare Definition 2.1'' of [Quine] p. 17, which is obtained from this theorem by applying df-clab 2240. Theorem sb7h 2081 provides a version where and don't have to be distinct. (Contributed by NM, 28-Jan-2004.)

Theoremsb7f 2080* This version of dfsb7 2079 does not require that and be distinct. This permits it to be used as a definition for substitution in a formalization that omits the logically redundant axiom ax-17 1628 i.e. that doesn't have the concept of a variable not occurring in a wff. (df-sb 1883 is also suitable, but its mixing of free and bound variables is distasteful to some logicians.) (Contributed by NM, 26-Jul-2006.) (Revised by Mario Carneiro, 6-Oct-2016.)

Theoremsb7h 2081* This version of dfsb7 2079 does not require that and be distinct. This permits it to be used as a definition for substitution in a formalization that omits the logically redundant axiom ax-17 1628 i.e. that doesn't have the concept of a variable not occurring in a wff. (df-sb 1883 is also suitable, but its mixing of free and bound variables is distasteful to some logicians.) (Contributed by NM, 26-Jul-2006.) (Proof shortened by Andrew Salmon, 25-May-2011.)

Theoremsb10f 2082* Hao Wang's identity axiom P6 in Irving Copi, Symbolic Logic (5th ed., 1979), p. 328. In traditional predicate calculus, this is a sole axiom for identity from which the usual ones can be derived. (Contributed by NM, 9-May-2005.) (Revised by Mario Carneiro, 6-Oct-2016.)

Theoremsbid2v 2083* An identity law for substitution. Used in proof of Theorem 9.7 of [Megill] p. 449 (p. 16 of the preprint). (Contributed by NM, 5-Aug-1993.)

Theoremsbelx 2084* Elimination of substitution. (Contributed by NM, 5-Aug-1993.)

Theoremsbel2x 2085* Elimination of double substitution. (Contributed by NM, 5-Aug-1993.)

Theoremsbal1 2086* A theorem used in elimination of disjoint variable restriction on and by replacing it with a distinctor . (Contributed by NM, 5-Aug-1993.)

Theoremsbal 2087* Move universal quantifier in and out of substitution. (Contributed by NM, 5-Aug-1993.)

Theoremsbex 2088* Move existential quantifier in and out of substitution. (Contributed by NM, 27-Sep-2003.)

Theoremsbalv 2089* Quantify with new variable inside substitution. (Contributed by NM, 18-Aug-1993.)

Theoremexsb 2090* An equivalent expression for existence. (Contributed by NM, 2-Feb-2005.)

Theorem2exsb 2091* An equivalent expression for double existence. (Contributed by NM, 2-Feb-2005.)

Theoremdvelim 2092* This theorem can be used to eliminate a distinct variable restriction on and and replace it with the "distinctor" as an antecedent. normally has free and can be read , and substitutes for and can be read . We don't require that and be distinct: if they aren't, the distinctor will become false (in multiple-element domains of discourse) and "protect" the consequent.

To obtain a closed-theorem form of this inference, prefix the hypotheses with , conjoin them, and apply dvelimdf 1976.

Other variants of this theorem are dvelimh 1974 (with no distinct variable restrictions), dvelimfALT 1853 (that avoids ax-11 1624), and dvelimALT 2094 (that avoids ax-10 1678). (Contributed by NM, 23-Nov-1994.)

Theoremdvelimv 2093* This theorem can be used to eliminate a distinct variable restriction on and and replace it with the "distinctor" as an antecedent. normally has free and can be read , and substitutes for and can be read . We don't require that and be distinct: if they aren't, the distinctor will become false (in multiple-element domains of discourse) and "protect" the consequent.

To obtain a closed-theorem form of this inference, prefix the hypotheses with , conjoin them, and apply dvelimdf 1976.

Other variants of this theorem are dvelimf 1975 (with no distinct variable restrictions), dvelimfALT 1853 (that avoids ax-11 1624), and dvelimALT 2094 (that avoids ax-10 1678). (Contributed by NM, 23-Nov-1994.)

TheoremdvelimALT 2094* Version of dvelim 2092 that doesn't use ax-10 1678. (See dvelimfALT 1853 for a version that doesn't use ax-11 1624.) (Contributed by NM, 17-May-2008.) (Proof modification is discouraged.)

Theoremdveeq1 2095* Quantifier introduction when one pair of variables is distinct. (Contributed by NM, 2-Jan-2002.)

Theoremdveeq1-o 2096* Quantifier introduction when one pair of variables is distinct. Version of dveeq1 2095 using ax-10o . (Contributed by NM, 2-Jan-2002.)

Theoremdveeq1ALT 2097* Version of dveeq1 2095 using ax-16 1926 instead of ax-17 1628. (Contributed by NM, 29-Apr-2008.) (Proof modification is discouraged.)

Theoremdveel1 2098* Quantifier introduction when one pair of variables is distinct. (Contributed by NM, 2-Jan-2002.)

Theoremdveel2 2099* Quantifier introduction when one pair of variables is distinct. (Contributed by NM, 2-Jan-2002.)

Theoremsbal2 2100* Move quantifier in and out of substitution. (Contributed by NM, 2-Jan-2002.)

Page List
Jump to page: Contents  1 1-100 2 101-200 3 201-300 4 301-400 5 401-500 6 501-600 7 601-700 8 701-800 9 801-900 10 901-1000 11 1001-1100 12 1101-1200 13 1201-1300 14 1301-1400 15 1401-1500 16 1501-1600 17 1601-1700 18 1701-1800 19 1801-1900 20 1901-2000 21 2001-2100 22 2101-2200 23 2201-2300 24 2301-2400 25 2401-2500 26 2501-2600 27 2601-2700 28 2701-2800 29 2801-2900 30 2901-3000 31 3001-3100 32 3101-3200 33 3201-3300 34 3301-3400 35 3401-3500 36 3501-3600 37 3601-3700 38 3701-3800 39 3801-3900 40 3901-4000 41 4001-4100 42 4101-4200 43 4201-4300 44 4301-4400 45 4401-4500 46 4501-4600 47 4601-4700 48 4701-4800 49 4801-4900 50 4901-5000 51 5001-5100 52 5101-5200 53 5201-5300 54 5301-5400 55 5401-5500 56 5501-5600 57 5601-5700 58 5701-5800 59 5801-5900 60 5901-6000 61 6001-6100 62 6101-6200 63 6201-6300 64 6301-6400 65 6401-6500 66 6501-6600 67 6601-6700 68 6701-6800 69 6801-6900 70 6901-7000 71 7001-7100 72 7101-7200 73 7201-7300 74 7301-7400 75 7401-7500 76 7501-7600 77 7601-7700 78 7701-7800 79 7801-7900 80 7901-8000 81 8001-8100 82 8101-8200 83 8201-8300 84 8301-8400 85 8401-8500 86 8501-8600 87 8601-8700 88 8701-8800 89 8801-8900 90 8901-9000 91 9001-9100 92 9101-9200 93 9201-9300 94 9301-9400 95 9401-9500 96 9501-9600 97 9601-9700 98 9701-9800 99 9801-9900 100 9901-10000 101 10001-10100 102 10101-10200 103 10201-10300 104 10301-10400 105 10401-10500 106 10501-10600 107 10601-10700 108 10701-10800 109 10801-10900 110 10901-11000 111 11001-11100 112 11101-11200 113 11201-11300 114 11301-11400 115 11401-11500 116 11501-11600 117 11601-11700 118 11701-11800 119 11801-11900 120 11901-12000 121 12001-12100 122 12101-12200 123 12201-12300 124 12301-12400 125 12401-12500 126 12501-12600 127 12601-12700 128 12701-12800 129 12801-12900 130 12901-13000 131 13001-13100 132 13101-13200 133 13201-13300 134 13301-13400 135 13401-13500 136 13501-13600 137 13601-13700 138 13701-13800 139 13801-13900 140 13901-14000 141 14001-14100 142 14101-14200 143 14201-14300 144 14301-14400 145 14401-14500 146 14501-14600 147 14601-14700 148 14701-14800 149 14801-14900 150 14901-15000 151 15001-15100 152 15101-15200 153 15201-15300 154 15301-15400 155 15401-15500 156 15501-15600 157 15601-15700 158 15701-15800 159 15801-15900 160 15901-16000 161 16001-16100 162 16101-16200 163 16201-16300 164 16301-16400 165 16401-16500 166 16501-16600 167 16601-16700 168 16701-16800 169 16801-16900 170 16901-17000 171 17001-17100 172 17101-17200 173 17201-17300 174 17301-17400 175 17401-17500 176 17501-17600 177 17601-17700 178 17701-17800 179 17801-17900 180 17901-18000 181 18001-18100 182 18101-18200 183 18201-18300 184 18301-18400 185 18401-18500 186 18501-18600 187 18601-18700 188 18701-18800 189 18801-18900 190 18901-19000 191 19001-19100 192 19101-19200 193 19201-19300 194 19301-19400 195 19401-19500 196 19501-19600 197 19601-19700 198 19701-19800 199 19801-19900 200 19901-20000 201 20001-20100 202 20101-20200 203 20201-20300 204 20301-20400 205 20401-20500 206 20501-20600 207 20601-20700 208 20701-20800 209 20801-20900 210 20901-21000 211 21001-21100 212 21101-21200 213 21201-21300 214 21301-21400 215 21401-21500 216 21501-21600 217 21601-21700 218 21701-21800 219 21801-21900 220 21901-22000 221 22001-22100 222 22101-22200 223 22201-22300 224 22301-22400 225 22401-22500 226 22501-22600 227 22601-22700 228 22701-22800 229 22801-22900 230 22901-23000 231 23001-23100 232 23101-23200 233 23201-23300 234 23301-23400 235 23401-23500 236 23501-23600 237 23601-23700 238 23701-23800 239 23801-23900 240 23901-24000 241 24001-24100 242 24101-24200 243 24201-24300 244 24301-24400 245 24401-24500 246 24501-24600 247 24601-24700 248 24701-24800 249 24801-24900 250 24901-25000 251 25001-25100 252 25101-25200 253 25201-25300 254 25301-25400 255 25401-25500 256 25501-25600 257 25601-25700 258 25701-25800 259 25801-25900 260 25901-26000 261 26001-26100 262 26101-26200 263 26201-26300 264 26301-26400 265 26401-26500 266 26501-26600 267 26601-26700 268 26701-26800 269 26801-26900 270 26901-27000 271 27001-27100 272 27101-27200 273 27201-27300 274 27301-27400 275 27401-27500 276 27501-27600 277 27601-27700 278 27701-27800 279 27801-27900 280 27901-28000 281 28001-28100 282 28101-28200 283 28201-28300 284 28301-28400 285 28401-28500 286 28501-28600 287 28601-28700 288 28701-28800 289 28801-28900 290 28901-29000 291 29001-29100 292 29101-29200 293 29201-29300 294 29301-29400 295 29401-29500 296 29501-29600 297 29601-29700 298 29701-29800 299 29801-29900 300 29901-30000 301 30001-30100 302 30101-30200 303 30201-30300 304 30301-30400 305 30401-30500 306 30501-30600 307 30601-30700 308 30701-30800 309 30801-30843
 Copyright terms: Public domain < Previous  Next >