Home Metamath Proof ExplorerTheorem List (p. 167 of 309) < Previous  Next > Browser slow? Try the Unicode version.

 Color key: Metamath Proof Explorer (1-21328) Hilbert Space Explorer (21329-22851) Users' Mathboxes (22852-30843)

Theorem List for Metamath Proof Explorer - 16601-16700   *Has distinct variable group(s)
TypeLabelDescription
Statement

Theoremisopn2 16601 A subset of the underlying set of a topology is open iff its complement is closed. (Contributed by NM, 4-Oct-2006.)

Theoremopncld 16602 The complement of an open set is closed. (Contributed by NM, 6-Oct-2006.)

Theoremdifopn 16603 The difference of a closed set with an open set is open. (Contributed by Mario Carneiro, 6-Jan-2014.)

Theoremtopcld 16604 The underlying set of a topology is closed. Part of Theorem 6.1(1) of [Munkres] p. 93. (Contributed by NM, 3-Oct-2006.)

Theoremntrval 16605 The interior of a subset of a topology's base set is the union of all the open sets it includes. Definition of interior of [Munkres] p. 94. (Contributed by NM, 10-Sep-2006.) (Revised by Mario Carneiro, 11-Nov-2013.)

Theoremclsval 16606* The closure of a subset of a topology's base set is the intersection of all the closed sets that include it. Definition of closure of [Munkres] p. 94. (Contributed by NM, 10-Sep-2006.) (Revised by Mario Carneiro, 11-Nov-2013.)

Theorem0cld 16607 The empty set is closed. Part of Theorem 6.1(1) of [Munkres] p. 93. (Contributed by NM, 4-Oct-2006.)

Theoremiincld 16608* The indexed intersection of a collection of closed sets is closed. Theorem 6.1(2) of [Munkres] p. 93. (Contributed by NM, 5-Oct-2006.) (Revised by Mario Carneiro, 3-Sep-2015.)

Theoremintcld 16609 The intersection of a set of closed sets is closed. (Contributed by NM, 5-Oct-2006.)

Theoremuncld 16610 The union of two closed sets is closed. Equivalent to Theorem 6.1(3) of [Munkres] p. 93. (Contributed by NM, 5-Oct-2006.)

Theoremcldcls 16611 A closed subset equals its own closure. (Contributed by NM, 15-Mar-2007.)

Theoremincld 16612 The intersection of two closed sets is closed. (Contributed by Jeff Madsen, 2-Sep-2009.) (Revised by Mario Carneiro, 3-Sep-2015.)

Theoremriincld 16613* A indexed relative intersection of closed sets is closed. (Contributed by Stefan O'Rear, 22-Feb-2015.)

Theoremiuncld 16614* A finite indexed union of closed sets is closed. (Contributed by Mario Carneiro, 19-Sep-2015.)

Theoremunicld 16615 A finite union of closed sets is closed. (Contributed by Mario Carneiro, 19-Sep-2015.)

Theoremclscld 16616 The closure of a subset of a topology's underlying set is closed. (Contributed by NM, 4-Oct-2006.)

Theoremclsf 16617 The closure function is a function from subsets of the base to closed sets. (Contributed by Mario Carneiro, 11-Apr-2015.)

Theoremntropn 16618 The interior of a subset of a topology's underlying set is open. (Contributed by NM, 11-Sep-2006.) (Revised by Mario Carneiro, 11-Nov-2013.)

Theoremclsval2 16619 Express closure in terms of interior. (Contributed by NM, 10-Sep-2006.) (Revised by Mario Carneiro, 11-Nov-2013.)

Theoremntrval2 16620 Interior expressed in terms of closure. (Contributed by NM, 1-Oct-2007.)

Theoremntrdif 16621 An interior of a complement is the complement of the closure. This set is also known as the exterior of . (Contributed by Jeff Hankins, 31-Aug-2009.)

Theoremclsdif 16622 A closure of a complement is the complement of the interior. (Contributed by Jeff Hankins, 31-Aug-2009.)

Theoremclsss 16623 Subset relationship for closure. (Contributed by NM, 10-Feb-2007.)

Theoremntrss 16624 Subset relationship for interior. (Contributed by NM, 3-Oct-2007.)

Theoremsscls 16625 A subset of a topology's underlying set is included in its closure. (Contributed by NM, 22-Feb-2007.)

Theoremntrss2 16626 A subset includes its interior. (Contributed by NM, 3-Oct-2007.) (Revised by Mario Carneiro, 11-Nov-2013.)

Theoremssntr 16627 An open subset of a set is a subset of the set's interior. (Contributed by Jeff Hankins, 31-Aug-2009.) (Revised by Mario Carneiro, 11-Nov-2013.)

Theoremclsss3 16628 The closure of a subset of a topological space is included in the space. (Contributed by NM, 26-Feb-2007.)

Theoremntrss3 16629 The interior of a subset of a topological space is included in the space. (Contributed by NM, 1-Oct-2007.)

Theoremntrin 16630 A pairwise intersection of interiors is the interior of the intersection. This does not always hold for arbitrary intersections. (Contributed by Jeff Hankins, 31-Aug-2009.)

Theoremcmclsopn 16631 The complement of a closure is open. (Contributed by NM, 11-Sep-2006.)

Theoremcmntrcld 16632 The complement of an interior is closed. (Contributed by NM, 1-Oct-2007.)

Theoremiscld3 16633 A subset is closed iff it equals its own closure. (Contributed by NM, 2-Oct-2006.)

Theoremiscld4 16634 A subset is closed iff it contains its own closure. (Contributed by NM, 31-Jan-2008.)

Theoremisopn3 16635 A subset is open iff it equals its own interior. (Contributed by NM, 9-Oct-2006.) (Revised by Mario Carneiro, 11-Nov-2013.)

Theoremclsidm 16636 The closure operation is idempotent. (Contributed by NM, 2-Oct-2007.)

Theoremntridm 16637 The interior operation is idempotent. (Contributed by NM, 2-Oct-2007.)

Theoremclstop 16638 The closure of a topology's underlying set is entire set. (Contributed by NM, 5-Oct-2007.)

Theoremntrtop 16639 The interior of a topology's underlying set is entire set. (Contributed by NM, 12-Sep-2006.)

Theorem0ntr 16640 A subset with an empty interior cannot cover a whole (nonempty) topology. (Contributed by NM, 12-Sep-2006.)

Theoremclsss2 16641 If a subset is included in a closed set, so is the subset's closure. (Contributed by NM, 22-Feb-2007.)

Theoremelcls 16642* Membership in a closure. Theorem 6.5(a) of [Munkres] p. 95. (Contributed by NM, 22-Feb-2007.)

Theoremelcls2 16643* Membership in a closure. (Contributed by NM, 5-Mar-2007.)

Theoremclsndisj 16644 Any open set containing a point that belongs to the closure of a subset intersects the subset. One direction of Theorem 6.5(a) of [Munkres] p. 95. (Contributed by NM, 26-Feb-2007.)

Theoremntrcls0 16645 A subset whose closure has an empty interior also has an empty interior. (Contributed by NM, 4-Oct-2007.)

Theoremntreq0 16646* Two ways to say that a subset has an empty interior. (Contributed by NM, 3-Oct-2007.) (Revised by Mario Carneiro, 11-Nov-2013.)

Theoremcldmre 16647 The closed sets of a topology comprise a Moore system on the points of the topology. (Contributed by Stefan O'Rear, 31-Jan-2015.)
Moore

Theoremmrccls 16648 Moore closure generalizes closure in a topology. (Contributed by Stefan O'Rear, 31-Jan-2015.)
mrCls

Theoremcls0 16649 The closure of the empty set. (Contributed by NM, 2-Oct-2007.)

Theoremntr0 16650 The interior of the empty set. (Contributed by NM, 2-Oct-2007.)

Theoremisopn3i 16651 An open subset equals its own interior. (Contributed by Mario Carneiro, 30-Dec-2016.)

Theoremelcls3 16652* Membership in a closure in terms of the members of a basis. Theorem 6.5(b) of [Munkres] p. 95. (Contributed by NM, 26-Feb-2007.) (Revised by Mario Carneiro, 3-Sep-2015.)

Theoremopncldf1 16653* A bijection useful for converting statements about open sets to statements about closed sets and vice versa. (Contributed by Jeff Hankins, 27-Aug-2009.) (Proof shortened by Mario Carneiro, 1-Sep-2015.)

Theoremopncldf2 16654* The values of the open-closed bijection. (Contributed by Jeff Hankins, 27-Aug-2009.) (Proof shortened by Mario Carneiro, 1-Sep-2015.)

Theoremopncldf3 16655* The values of the converse/inverse of the open-closed bijection. (Contributed by Jeff Hankins, 27-Aug-2009.) (Proof shortened by Mario Carneiro, 1-Sep-2015.)

Theoremisclo 16656* A set is clopen iff for every point in the space there is a neighborhood such that all the points in are in iff is. (Contributed by Mario Carneiro, 10-Mar-2015.)

Theoremisclo2 16657* A set is clopen iff for every point in the space there is a neighborhood of which is either disjoint from or contained in . (Contributed by Mario Carneiro, 7-Jul-2015.)

Theoremdiscld 16658 The open sets of a discrete topology are closed and its closed sets are open. (Contributed by FL, 7-Jun-2007.) (Revised by Mario Carneiro, 7-Apr-2015.)

Theoremsn0cld 16659 The closed sets of the topology . (Contributed by FL, 5-Jan-2009.)

Theoremindiscld 16660 The closed sets of an indiscrete topology. (Contributed by FL, 5-Jan-2009.) (Revised by Mario Carneiro, 14-Aug-2015.)

Theoremmretopd 16661* A Moore collection which is closed under finite unions called topological; such a collection is the closed sets of a canonically associated topology. (Contributed by Stefan O'Rear, 1-Feb-2015.)
Moore                            TopOn

Theoremtoponmre 16662 The topologies over a given base set form a Moore collection: the intersection of any family of them is a topology, including the empty (relative) intersection which gives the discrete topology distop 16565. (Contributed by Stefan O'Rear, 31-Jan-2015.) (Revised by Mario Carneiro, 5-May-2015.)
TopOn Moore

Theoremcldmreon 16663 The closed sets of a topology over a set are a Moore collection over the same set. (Contributed by Stefan O'Rear, 31-Jan-2015.)
TopOn Moore

Theoremiscldtop 16664* A family is the closed sets of a topology iff it is a Moore collection and closed under finite union. (Contributed by Stefan O'Rear, 1-Feb-2015.)
TopOn Moore

Theoremmreclatdemo 16665 The closed subspaces of a topology-bearing module form a complete lattice. Demonstration for mreclat 14125. (Contributed by Stefan O'Rear, 31-Jan-2015.)
toInc

11.1.5  Neighborhoods

Syntaxcnei 16666 Extend class notation with neighborhood relation for topologies.

Definitiondf-nei 16667* Define a function on topologies whose value is a map from a subset to its neighborhoods. (Contributed by NM, 11-Feb-2007.)

Theoremneifval 16668* The neighborhood function on the subsets of a topology's base set. (Contributed by NM, 11-Feb-2007.) (Revised by Mario Carneiro, 11-Nov-2013.)

Theoremneif 16669 The neighborhood function is a function of the subsets of a topology's base set. (Contributed by NM, 12-Feb-2007.) (Revised by Mario Carneiro, 11-Nov-2013.)

Theoremneiss2 16670 A set with a neighborhood is a subset of the topology's base set. (This theorem depends on a function's value being empty outside of its domain, but it will make later theorems simpler to state.) (Contributed by NM, 12-Feb-2007.)

Theoremneival 16671* The set of neighborhoods of a subset of the base set of a topology. (Contributed by NM, 11-Feb-2007.) (Revised by Mario Carneiro, 11-Nov-2013.)

Theoremisnei 16672* The predicate " is a neighborhood of ." (Contributed by FL, 25-Sep-2006.) (Revised by Mario Carneiro, 11-Nov-2013.)

Theoremneiint 16673 An intuitive definition of a neighborhood in terms of interior. (Contributed by Szymon Jaroszewicz, 18-Dec-2007.) (Revised by Mario Carneiro, 11-Nov-2013.)

Theoremisneip 16674* The predicate " is a neighborhood of point ." (Contributed by NM, 26-Feb-2007.)

Theoremneii1 16675 A neighborhood is included in the topology's base set. (Contributed by NM, 12-Feb-2007.)

Theoremneisspw 16676 The neighborhoods of any set are subsets of the base set. (Contributed by Stefan O'Rear, 6-Aug-2015.)

Theoremneii2 16677* Property of a neighborhood. (Contributed by NM, 12-Feb-2007.)

Theoremneiss 16678 Any neighborhood of a set is also a neighborhood of any subset . Theorem of [BourbakiTop1] p. I.2. (Contributed by FL, 25-Sep-2006.)

Theoremssnei 16679 A set is included in its neighborhoods. Proposition Viii of [BourbakiTop1] p. I.3 . (Contributed by FL, 16-Nov-2006.)

Theoremelnei 16680 A point belongs to any of its neighborhoods. Proposition Viii of [BourbakiTop1] p. I.3. (Contributed by FL, 28-Sep-2006.)

Theorem0nnei 16681 The empty set is not a neighborhood of a nonempty set. (Contributed by FL, 18-Sep-2007.)

Theoremneips 16682* A neighborhood of a set is a neighborhood of every point in the set. Proposition of [BourbakiTop1] p. I.2. (Contributed by FL, 16-Nov-2006.)

Theoremopnneissb 16683 An open set is a neighborhood of any of its subsets. (Contributed by FL, 2-Oct-2006.)

Theoremopnssneib 16684 Any superset of an open set is a neighborhood of it. (Contributed by NM, 14-Feb-2007.)

Theoremssnei2 16685 Any subset of containing a neigborhood of a set is a neighborhood of this set. Proposition Vi of [BourbakiTop1] p. I.3. (Contributed by FL, 2-Oct-2006.)

Theoremneindisj 16686 Any neighborhood of an element in the closure of a subset intersects the subset. Part of proof of Theorem 6.6 of [Munkres] p. 97. (Contributed by NM, 26-Feb-2007.)

Theoremopnneiss 16687 An open set is a neighborhood of any of its subsets. (Contributed by NM, 13-Feb-2007.)

Theoremopnneip 16688 An open set is a neighborhood of any of its members. (Contributed by NM, 8-Mar-2007.)

Theoremopnnei 16689* A set is open iff it is a neighborhood of all its points. ( Contributed by Jeff Hankins, 15-Sep-2009.) (Contributed by NM, 16-Sep-2009.)

Theoremtpnei 16690 The underlying set of a topology is a neighborhood of any of its subsets. Special case of opnneiss 16687. (Contributed by FL, 2-Oct-2006.)

Theoremneiuni 16691 The union of the neighborhoods of a set equals the topology's underlying set. (Contributed by FL, 18-Sep-2007.) (Revised by Mario Carneiro, 9-Apr-2015.)

Theoremneindisj2 16692* A point belongs to the closure of a set iff every neighborhood of meets . (Contributed by FL, 15-Sep-2013.)

Theoremtopssnei 16693 A finer topology has more neighborhoods. (Contributed by Mario Carneiro, 9-Apr-2015.)

Theoreminnei 16694 The intersection of two neighborhoods of a set is also a neighborhood of the set. Proposition Vii of [BourbakiTop1] p. I.3 . (Contributed by FL, 28-Sep-2006.)

Theoremopnneiid 16695 Only an open set is a neighborhood of itself. (Contributed by FL, 2-Oct-2006.)

Theoremneissex 16696* For any neighborhood of , there is a neighborhood of such that is a neighborhood of all subsets of . Proposition Viv of [BourbakiTop1] p. I.3 . (Contributed by FL, 2-Oct-2006.)

Theorem0nei 16697 The empty set is a neighborhood of itself. (Contributed by FL, 10-Dec-2006.)

11.1.6  Limit points and perfect sets

Syntaxclp 16698 Extend class notation with the limit point function for topologies.

Syntaxcperf 16699 Extend class notation with the class of all perfect spaces.
Perf

Definitiondf-lp 16700* Define a function on topologies whose value is the set of limit points of the subsets of the base set. See lpval 16703. (Contributed by NM, 10-Feb-2007.)

Page List
Jump to page: Contents  1 1-100 2 101-200 3 201-300 4 301-400 5 401-500 6 501-600 7 601-700 8 701-800 9 801-900 10 901-1000 11 1001-1100 12 1101-1200 13 1201-1300 14 1301-1400 15 1401-1500 16 1501-1600 17 1601-1700 18 1701-1800 19 1801-1900 20 1901-2000 21 2001-2100 22 2101-2200 23 2201-2300 24 2301-2400 25 2401-2500 26 2501-2600 27 2601-2700 28 2701-2800 29 2801-2900 30 2901-3000 31 3001-3100 32 3101-3200 33 3201-3300 34 3301-3400 35 3401-3500 36 3501-3600 37 3601-3700 38 3701-3800 39 3801-3900 40 3901-4000 41 4001-4100 42 4101-4200 43 4201-4300 44 4301-4400 45 4401-4500 46 4501-4600 47 4601-4700 48 4701-4800 49 4801-4900 50 4901-5000 51 5001-5100 52 5101-5200 53 5201-5300 54 5301-5400 55 5401-5500 56 5501-5600 57 5601-5700 58 5701-5800 59 5801-5900 60 5901-6000 61 6001-6100 62 6101-6200 63 6201-6300 64 6301-6400 65 6401-6500 66 6501-6600 67 6601-6700 68 6701-6800 69 6801-6900 70 6901-7000 71 7001-7100 72 7101-7200 73 7201-7300 74 7301-7400 75 7401-7500 76 7501-7600 77 7601-7700 78 7701-7800 79 7801-7900 80 7901-8000 81 8001-8100 82 8101-8200 83 8201-8300 84 8301-8400 85 8401-8500 86 8501-8600 87 8601-8700 88 8701-8800 89 8801-8900 90 8901-9000 91 9001-9100 92 9101-9200 93 9201-9300 94 9301-9400 95 9401-9500 96 9501-9600 97 9601-9700 98 9701-9800 99 9801-9900 100 9901-10000 101 10001-10100 102 10101-10200 103 10201-10300 104 10301-10400 105 10401-10500 106 10501-10600 107 10601-10700 108 10701-10800 109 10801-10900 110 10901-11000 111 11001-11100 112 11101-11200 113 11201-11300 114 11301-11400 115 11401-11500 116 11501-11600 117 11601-11700 118 11701-11800 119 11801-11900 120 11901-12000 121 12001-12100 122 12101-12200 123 12201-12300 124 12301-12400 125 12401-12500 126 12501-12600 127 12601-12700 128 12701-12800 129 12801-12900 130 12901-13000 131 13001-13100 132 13101-13200 133 13201-13300 134 13301-13400 135 13401-13500 136 13501-13600 137 13601-13700 138 13701-13800 139 13801-13900 140 13901-14000 141 14001-14100 142 14101-14200 143 14201-14300 144 14301-14400 145 14401-14500 146 14501-14600 147 14601-14700 148 14701-14800 149 14801-14900 150 14901-15000 151 15001-15100 152 15101-15200 153 15201-15300 154 15301-15400 155 15401-15500 156 15501-15600 157 15601-15700 158 15701-15800 159 15801-15900 160 15901-16000 161 16001-16100 162 16101-16200 163 16201-16300 164 16301-16400 165 16401-16500 166 16501-16600 167 16601-16700 168 16701-16800 169 16801-16900 170 16901-17000 171 17001-17100 172 17101-17200 173 17201-17300 174 17301-17400 175 17401-17500 176 17501-17600 177 17601-17700 178 17701-17800 179 17801-17900 180 17901-18000 181 18001-18100 182 18101-18200 183 18201-18300 184 18301-18400 185 18401-18500 186 18501-18600 187 18601-18700 188 18701-18800 189 18801-18900 190 18901-19000 191 19001-19100 192 19101-19200 193 19201-19300 194 19301-19400 195 19401-19500 196 19501-19600 197 19601-19700 198 19701-19800 199 19801-19900 200 19901-20000 201 20001-20100 202 20101-20200 203 20201-20300 204 20301-20400 205 20401-20500 206 20501-20600 207 20601-20700 208 20701-20800 209 20801-20900 210 20901-21000 211 21001-21100 212 21101-21200 213 21201-21300 214 21301-21400 215 21401-21500 216 21501-21600 217 21601-21700 218 21701-21800 219 21801-21900 220 21901-22000 221 22001-22100 222 22101-22200 223 22201-22300 224 22301-22400 225 22401-22500 226 22501-22600 227 22601-22700 228 22701-22800 229 22801-22900 230 22901-23000 231 23001-23100 232 23101-23200 233 23201-23300 234 23301-23400 235 23401-23500 236 23501-23600 237 23601-23700 238 23701-23800 239 23801-23900 240 23901-24000 241 24001-24100 242 24101-24200 243 24201-24300 244 24301-24400 245 24401-24500 246 24501-24600 247 24601-24700 248 24701-24800 249 24801-24900 250 24901-25000 251 25001-25100 252 25101-25200 253 25201-25300 254 25301-25400 255 25401-25500 256 25501-25600 257 25601-25700 258 25701-25800 259 25801-25900 260 25901-26000 261 26001-26100 262 26101-26200 263 26201-26300 264 26301-26400 265 26401-26500 266 26501-26600 267 26601-26700 268 26701-26800 269 26801-26900 270 26901-27000 271 27001-27100 272 27101-27200 273 27201-27300 274 27301-27400 275 27401-27500 276 27501-27600 277 27601-27700 278 27701-27800 279 27801-27900 280 27901-28000 281 28001-28100 282 28101-28200 283 28201-28300 284 28301-28400 285 28401-28500 286 28501-28600 287 28601-28700 288 28701-28800 289 28801-28900 290 28901-29000 291 29001-29100 292 29101-29200 293 29201-29300 294 29301-29400 295 29401-29500 296 29501-29600 297 29601-29700 298 29701-29800 299 29801-29900 300 29901-30000 301 30001-30100 302 30101-30200 303 30201-30300 304 30301-30400 305 30401-30500 306 30501-30600 307 30601-30700 308 30701-30800 309 30801-30843
 Copyright terms: Public domain < Previous  Next >