MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  minvecolem1 Unicode version

Theorem minvecolem1 21283
Description: Lemma for minveco 21293. The set of all distances from points of  Y to  A are a nonempty set of nonnegative reals. (Contributed by Mario Carneiro, 8-May-2014.) (New usage is discouraged.)
Hypotheses
Ref Expression
minveco.x  |-  X  =  ( BaseSet `  U )
minveco.m  |-  M  =  ( -v `  U
)
minveco.n  |-  N  =  ( normCV `  U )
minveco.y  |-  Y  =  ( BaseSet `  W )
minveco.u  |-  ( ph  ->  U  e.  CPreHil OLD )
minveco.w  |-  ( ph  ->  W  e.  ( (
SubSp `  U )  i^i 
CBan ) )
minveco.a  |-  ( ph  ->  A  e.  X )
minveco.d  |-  D  =  ( IndMet `  U )
minveco.j  |-  J  =  ( MetOpen `  D )
minveco.r  |-  R  =  ran  (  y  e.  Y  |->  ( N `  ( A M y ) ) )
Assertion
Ref Expression
minvecolem1  |-  ( ph  ->  ( R  C_  RR  /\  R  =/=  (/)  /\  A. w  e.  R  0  <_  w ) )
Distinct variable groups:    y, w, J    w, M, y    w, N, y    ph, w, y   
w, R    w, A, y    w, D, y    w, U, y    w, W, y   
w, X    w, Y, y
Allowed substitution hints:    R( y)    X( y)

Proof of Theorem minvecolem1
StepHypRef Expression
1 minveco.r . . 3  |-  R  =  ran  (  y  e.  Y  |->  ( N `  ( A M y ) ) )
2 minveco.u . . . . . . . 8  |-  ( ph  ->  U  e.  CPreHil OLD )
3 phnv 21222 . . . . . . . 8  |-  ( U  e.  CPreHil OLD  ->  U  e.  NrmCVec )
42, 3syl 17 . . . . . . 7  |-  ( ph  ->  U  e.  NrmCVec )
54adantr 453 . . . . . 6  |-  ( (
ph  /\  y  e.  Y )  ->  U  e.  NrmCVec )
6 minveco.a . . . . . . . 8  |-  ( ph  ->  A  e.  X )
76adantr 453 . . . . . . 7  |-  ( (
ph  /\  y  e.  Y )  ->  A  e.  X )
8 minveco.w . . . . . . . . . . 11  |-  ( ph  ->  W  e.  ( (
SubSp `  U )  i^i 
CBan ) )
9 elin 3266 . . . . . . . . . . 11  |-  ( W  e.  ( ( SubSp `  U )  i^i  CBan ) 
<->  ( W  e.  (
SubSp `  U )  /\  W  e.  CBan ) )
108, 9sylib 190 . . . . . . . . . 10  |-  ( ph  ->  ( W  e.  (
SubSp `  U )  /\  W  e.  CBan ) )
1110simpld 447 . . . . . . . . 9  |-  ( ph  ->  W  e.  ( SubSp `  U ) )
12 minveco.x . . . . . . . . . 10  |-  X  =  ( BaseSet `  U )
13 minveco.y . . . . . . . . . 10  |-  Y  =  ( BaseSet `  W )
14 eqid 2253 . . . . . . . . . 10  |-  ( SubSp `  U )  =  (
SubSp `  U )
1512, 13, 14sspba 21133 . . . . . . . . 9  |-  ( ( U  e.  NrmCVec  /\  W  e.  ( SubSp `  U )
)  ->  Y  C_  X
)
164, 11, 15syl2anc 645 . . . . . . . 8  |-  ( ph  ->  Y  C_  X )
1716sselda 3103 . . . . . . 7  |-  ( (
ph  /\  y  e.  Y )  ->  y  e.  X )
18 minveco.m . . . . . . . 8  |-  M  =  ( -v `  U
)
1912, 18nvmcl 21035 . . . . . . 7  |-  ( ( U  e.  NrmCVec  /\  A  e.  X  /\  y  e.  X )  ->  ( A M y )  e.  X )
205, 7, 17, 19syl3anc 1187 . . . . . 6  |-  ( (
ph  /\  y  e.  Y )  ->  ( A M y )  e.  X )
21 minveco.n . . . . . . 7  |-  N  =  ( normCV `  U )
2212, 21nvcl 21055 . . . . . 6  |-  ( ( U  e.  NrmCVec  /\  ( A M y )  e.  X )  ->  ( N `  ( A M y ) )  e.  RR )
235, 20, 22syl2anc 645 . . . . 5  |-  ( (
ph  /\  y  e.  Y )  ->  ( N `  ( A M y ) )  e.  RR )
24 eqid 2253 . . . . 5  |-  ( y  e.  Y  |->  ( N `
 ( A M y ) ) )  =  ( y  e.  Y  |->  ( N `  ( A M y ) ) )
2523, 24fmptd 5536 . . . 4  |-  ( ph  ->  ( y  e.  Y  |->  ( N `  ( A M y ) ) ) : Y --> RR )
26 frn 5252 . . . 4  |-  ( ( y  e.  Y  |->  ( N `  ( A M y ) ) ) : Y --> RR  ->  ran  (  y  e.  Y  |->  ( N `  ( A M y ) ) )  C_  RR )
2725, 26syl 17 . . 3  |-  ( ph  ->  ran  (  y  e.  Y  |->  ( N `  ( A M y ) ) )  C_  RR )
281, 27syl5eqss 3143 . 2  |-  ( ph  ->  R  C_  RR )
2910simprd 451 . . . . . 6  |-  ( ph  ->  W  e.  CBan )
30 bnnv 21275 . . . . . 6  |-  ( W  e.  CBan  ->  W  e.  NrmCVec )
31 eqid 2253 . . . . . . 7  |-  ( 0vec `  W )  =  (
0vec `  W )
3213, 31nvzcl 21022 . . . . . 6  |-  ( W  e.  NrmCVec  ->  ( 0vec `  W
)  e.  Y )
3329, 30, 323syl 20 . . . . 5  |-  ( ph  ->  ( 0vec `  W
)  e.  Y )
34 fvex 5391 . . . . . 6  |-  ( N `
 ( A M y ) )  e. 
_V
3534, 24dmmpti 5230 . . . . 5  |-  dom  ( 
y  e.  Y  |->  ( N `  ( A M y ) ) )  =  Y
3633, 35syl6eleqr 2344 . . . 4  |-  ( ph  ->  ( 0vec `  W
)  e.  dom  ( 
y  e.  Y  |->  ( N `  ( A M y ) ) ) )
37 ne0i 3368 . . . 4  |-  ( (
0vec `  W )  e.  dom  (  y  e.  Y  |->  ( N `  ( A M y ) ) )  ->  dom  (  y  e.  Y  |->  ( N `  ( A M y ) ) )  =/=  (/) )
3836, 37syl 17 . . 3  |-  ( ph  ->  dom  (  y  e.  Y  |->  ( N `  ( A M y ) ) )  =/=  (/) )
39 dm0rn0 4802 . . . . 5  |-  ( dom  (  y  e.  Y  |->  ( N `  ( A M y ) ) )  =  (/)  <->  ran  (  y  e.  Y  |->  ( N `
 ( A M y ) ) )  =  (/) )
401eqeq1i 2260 . . . . 5  |-  ( R  =  (/)  <->  ran  (  y  e.  Y  |->  ( N `  ( A M y ) ) )  =  (/) )
4139, 40bitr4i 245 . . . 4  |-  ( dom  (  y  e.  Y  |->  ( N `  ( A M y ) ) )  =  (/)  <->  R  =  (/) )
4241necon3bii 2444 . . 3  |-  ( dom  (  y  e.  Y  |->  ( N `  ( A M y ) ) )  =/=  (/)  <->  R  =/=  (/) )
4338, 42sylib 190 . 2  |-  ( ph  ->  R  =/=  (/) )
4412, 21nvge0 21070 . . . . . 6  |-  ( ( U  e.  NrmCVec  /\  ( A M y )  e.  X )  ->  0  <_  ( N `  ( A M y ) ) )
455, 20, 44syl2anc 645 . . . . 5  |-  ( (
ph  /\  y  e.  Y )  ->  0  <_  ( N `  ( A M y ) ) )
4645ralrimiva 2588 . . . 4  |-  ( ph  ->  A. y  e.  Y 
0  <_  ( N `  ( A M y ) ) )
4734rgenw 2572 . . . . 5  |-  A. y  e.  Y  ( N `  ( A M y ) )  e.  _V
48 breq2 3924 . . . . . 6  |-  ( w  =  ( N `  ( A M y ) )  ->  ( 0  <_  w  <->  0  <_  ( N `  ( A M y ) ) ) )
4924, 48ralrnmpt 5521 . . . . 5  |-  ( A. y  e.  Y  ( N `  ( A M y ) )  e.  _V  ->  ( A. w  e.  ran  (  y  e.  Y  |->  ( N `  ( A M y ) ) ) 0  <_  w  <->  A. y  e.  Y  0  <_  ( N `  ( A M y ) ) ) )
5047, 49ax-mp 10 . . . 4  |-  ( A. w  e.  ran  (  y  e.  Y  |->  ( N `
 ( A M y ) ) ) 0  <_  w  <->  A. y  e.  Y  0  <_  ( N `  ( A M y ) ) )
5146, 50sylibr 205 . . 3  |-  ( ph  ->  A. w  e.  ran  (  y  e.  Y  |->  ( N `  ( A M y ) ) ) 0  <_  w
)
521raleqi 2692 . . 3  |-  ( A. w  e.  R  0  <_  w  <->  A. w  e.  ran  (  y  e.  Y  |->  ( N `  ( A M y ) ) ) 0  <_  w
)
5351, 52sylibr 205 . 2  |-  ( ph  ->  A. w  e.  R 
0  <_  w )
5428, 43, 533jca 1137 1  |-  ( ph  ->  ( R  C_  RR  /\  R  =/=  (/)  /\  A. w  e.  R  0  <_  w ) )
Colors of variables: wff set class
Syntax hints:    -> wi 6    <-> wb 178    /\ wa 360    /\ w3a 939    = wceq 1619    e. wcel 1621    =/= wne 2412   A.wral 2509   _Vcvv 2727    i^i cin 3077    C_ wss 3078   (/)c0 3362   class class class wbr 3920    e. cmpt 3974   dom cdm 4580   ran crn 4581   -->wf 4588   ` cfv 4592  (class class class)co 5710   RRcr 8616   0cc0 8617    <_ cle 8748   MetOpencmopn 16204   NrmCVeccnv 20970   BaseSetcba 20972   0veccn0v 20974   -vcnsb 20975   normCVcnmcv 20976   IndMetcims 20977   SubSpcss 21127   CPreHil OLDccphlo 21220   CBanccbn 21271
This theorem is referenced by:  minvecolem2  21284  minvecolem3  21285  minvecolem4c  21288  minvecolem4  21289  minvecolem5  21290  minvecolem6  21291
This theorem was proved from axioms:  ax-1 7  ax-2 8  ax-3 9  ax-mp 10  ax-5 1533  ax-6 1534  ax-7 1535  ax-gen 1536  ax-8 1623  ax-11 1624  ax-13 1625  ax-14 1626  ax-17 1628  ax-12o 1664  ax-10 1678  ax-9 1684  ax-4 1692  ax-16 1926  ax-ext 2234  ax-rep 4028  ax-sep 4038  ax-nul 4046  ax-pow 4082  ax-pr 4108  ax-un 4403  ax-cnex 8673  ax-resscn 8674  ax-1cn 8675  ax-icn 8676  ax-addcl 8677  ax-addrcl 8678  ax-mulcl 8679  ax-mulrcl 8680  ax-mulcom 8681  ax-addass 8682  ax-mulass 8683  ax-distr 8684  ax-i2m1 8685  ax-1ne0 8686  ax-1rid 8687  ax-rnegex 8688  ax-rrecex 8689  ax-cnre 8690  ax-pre-lttri 8691  ax-pre-lttrn 8692  ax-pre-ltadd 8693  ax-pre-mulgt0 8694  ax-pre-sup 8695
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3or 940  df-3an 941  df-tru 1315  df-ex 1538  df-nf 1540  df-sb 1883  df-eu 2118  df-mo 2119  df-clab 2240  df-cleq 2246  df-clel 2249  df-nfc 2374  df-ne 2414  df-nel 2415  df-ral 2513  df-rex 2514  df-reu 2515  df-rab 2516  df-v 2729  df-sbc 2922  df-csb 3010  df-dif 3081  df-un 3083  df-in 3085  df-ss 3089  df-pss 3091  df-nul 3363  df-if 3471  df-pw 3532  df-sn 3550  df-pr 3551  df-tp 3552  df-op 3553  df-uni 3728  df-iun 3805  df-br 3921  df-opab 3975  df-mpt 3976  df-tr 4011  df-eprel 4198  df-id 4202  df-po 4207  df-so 4208  df-fr 4245  df-we 4247  df-ord 4288  df-on 4289  df-lim 4290  df-suc 4291  df-om 4548  df-xp 4594  df-rel 4595  df-cnv 4596  df-co 4597  df-dm 4598  df-rn 4599  df-res 4600  df-ima 4601  df-fun 4602  df-fn 4603  df-f 4604  df-f1 4605  df-fo 4606  df-f1o 4607  df-fv 4608  df-ov 5713  df-oprab 5714  df-mpt2 5715  df-1st 5974  df-2nd 5975  df-iota 6143  df-riota 6190  df-recs 6274  df-rdg 6309  df-er 6546  df-en 6750  df-dom 6751  df-sdom 6752  df-sup 7078  df-pnf 8749  df-mnf 8750  df-xr 8751  df-ltxr 8752  df-le 8753  df-sub 8919  df-neg 8920  df-div 9304  df-n 9627  df-2 9684  df-3 9685  df-n0 9845  df-z 9904  df-uz 10110  df-rp 10234  df-seq 10925  df-exp 10983  df-cj 11461  df-re 11462  df-im 11463  df-sqr 11597  df-abs 11598  df-grpo 20688  df-gid 20689  df-ginv 20690  df-gdiv 20691  df-ablo 20779  df-vc 20932  df-nv 20978  df-va 20981  df-ba 20982  df-sm 20983  df-0v 20984  df-vs 20985  df-nmcv 20986  df-ssp 21128  df-ph 21221  df-cbn 21272
  Copyright terms: Public domain W3C validator