HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  mayetes3i Unicode version

Theorem mayetes3i 22157
Description: Mayet's equation E^*3, derived from E3. Solution, for n = 3, to open problem in Remark (b) after Theorem 7.1 of [Mayet3] p. 1240. (Contributed by NM, 10-May-2009.) (New usage is discouraged.)
Hypotheses
Ref Expression
mayetes3.a  |-  A  e. 
CH
mayetes3.b  |-  B  e. 
CH
mayetes3.c  |-  C  e. 
CH
mayetes3.d  |-  D  e. 
CH
mayetes3.f  |-  F  e. 
CH
mayetes3.g  |-  G  e. 
CH
mayetes3.r  |-  R  e. 
CH
mayetes3.ac  |-  A  C_  ( _|_ `  C )
mayetes3.af  |-  A  C_  ( _|_ `  F )
mayetes3.cf  |-  C  C_  ( _|_ `  F )
mayetes3.ab  |-  A  C_  ( _|_ `  B )
mayetes3.cd  |-  C  C_  ( _|_ `  D )
mayetes3.fg  |-  F  C_  ( _|_ `  G )
mayetes3.rx  |-  R  C_  ( _|_ `  X )
mayetes3.x  |-  X  =  ( ( A  vH  C )  vH  F
)
mayetes3.y  |-  Y  =  ( ( ( A  vH  B )  i^i  ( C  vH  D
) )  i^i  ( F  vH  G ) )
mayetes3.z  |-  Z  =  ( ( B  vH  D )  vH  G
)
Assertion
Ref Expression
mayetes3i  |-  ( ( X  vH  R )  i^i  Y )  C_  ( Z  vH  R )

Proof of Theorem mayetes3i
StepHypRef Expression
1 mayetes3.a . . . . . . . . 9  |-  A  e. 
CH
2 mayetes3.c . . . . . . . . 9  |-  C  e. 
CH
31, 2chjcli 21866 . . . . . . . 8  |-  ( A  vH  C )  e. 
CH
4 mayetes3.f . . . . . . . 8  |-  F  e. 
CH
53, 4chjcli 21866 . . . . . . 7  |-  ( ( A  vH  C )  vH  F )  e. 
CH
6 mayetes3.r . . . . . . 7  |-  R  e. 
CH
75, 6chjcomi 21877 . . . . . 6  |-  ( ( ( A  vH  C
)  vH  F )  vH  R )  =  ( R  vH  ( ( A  vH  C )  vH  F ) )
87eqimssi 3153 . . . . 5  |-  ( ( ( A  vH  C
)  vH  F )  vH  R )  C_  ( R  vH  ( ( A  vH  C )  vH  F ) )
9 mayetes3.b . . . . . . . . . . 11  |-  B  e. 
CH
101, 9chjcli 21866 . . . . . . . . . 10  |-  ( A  vH  B )  e. 
CH
1110, 6chub1i 21878 . . . . . . . . 9  |-  ( A  vH  B )  C_  ( ( A  vH  B )  vH  R
)
121, 9, 6chjassi 21895 . . . . . . . . 9  |-  ( ( A  vH  B )  vH  R )  =  ( A  vH  ( B  vH  R ) )
1311, 12sseqtri 3131 . . . . . . . 8  |-  ( A  vH  B )  C_  ( A  vH  ( B  vH  R ) )
149, 6chjcli 21866 . . . . . . . . . 10  |-  ( B  vH  R )  e. 
CH
151, 14chjcli 21866 . . . . . . . . 9  |-  ( A  vH  ( B  vH  R ) )  e. 
CH
1615, 6chub2i 21879 . . . . . . . 8  |-  ( A  vH  ( B  vH  R ) )  C_  ( R  vH  ( A  vH  ( B  vH  R ) ) )
1713, 16sstri 3109 . . . . . . 7  |-  ( A  vH  B )  C_  ( R  vH  ( A  vH  ( B  vH  R ) ) )
18 mayetes3.d . . . . . . . . . . 11  |-  D  e. 
CH
192, 18chjcli 21866 . . . . . . . . . 10  |-  ( C  vH  D )  e. 
CH
2019, 6chub1i 21878 . . . . . . . . 9  |-  ( C  vH  D )  C_  ( ( C  vH  D )  vH  R
)
212, 18, 6chjassi 21895 . . . . . . . . 9  |-  ( ( C  vH  D )  vH  R )  =  ( C  vH  ( D  vH  R ) )
2220, 21sseqtri 3131 . . . . . . . 8  |-  ( C  vH  D )  C_  ( C  vH  ( D  vH  R ) )
2318, 6chjcli 21866 . . . . . . . . . 10  |-  ( D  vH  R )  e. 
CH
242, 23chjcli 21866 . . . . . . . . 9  |-  ( C  vH  ( D  vH  R ) )  e. 
CH
2524, 6chub2i 21879 . . . . . . . 8  |-  ( C  vH  ( D  vH  R ) )  C_  ( R  vH  ( C  vH  ( D  vH  R ) ) )
2622, 25sstri 3109 . . . . . . 7  |-  ( C  vH  D )  C_  ( R  vH  ( C  vH  ( D  vH  R ) ) )
27 ss2in 3303 . . . . . . 7  |-  ( ( ( A  vH  B
)  C_  ( R  vH  ( A  vH  ( B  vH  R ) ) )  /\  ( C  vH  D )  C_  ( R  vH  ( C  vH  ( D  vH  R ) ) ) )  ->  ( ( A  vH  B )  i^i  ( C  vH  D
) )  C_  (
( R  vH  ( A  vH  ( B  vH  R ) ) )  i^i  ( R  vH  ( C  vH  ( D  vH  R ) ) ) ) )
2817, 26, 27mp2an 656 . . . . . 6  |-  ( ( A  vH  B )  i^i  ( C  vH  D ) )  C_  ( ( R  vH  ( A  vH  ( B  vH  R ) ) )  i^i  ( R  vH  ( C  vH  ( D  vH  R ) ) ) )
29 mayetes3.g . . . . . . . . . 10  |-  G  e. 
CH
304, 29chjcli 21866 . . . . . . . . 9  |-  ( F  vH  G )  e. 
CH
3130, 6chub1i 21878 . . . . . . . 8  |-  ( F  vH  G )  C_  ( ( F  vH  G )  vH  R
)
324, 29, 6chjassi 21895 . . . . . . . 8  |-  ( ( F  vH  G )  vH  R )  =  ( F  vH  ( G  vH  R ) )
3331, 32sseqtri 3131 . . . . . . 7  |-  ( F  vH  G )  C_  ( F  vH  ( G  vH  R ) )
3429, 6chjcli 21866 . . . . . . . . 9  |-  ( G  vH  R )  e. 
CH
354, 34chjcli 21866 . . . . . . . 8  |-  ( F  vH  ( G  vH  R ) )  e. 
CH
3635, 6chub2i 21879 . . . . . . 7  |-  ( F  vH  ( G  vH  R ) )  C_  ( R  vH  ( F  vH  ( G  vH  R ) ) )
3733, 36sstri 3109 . . . . . 6  |-  ( F  vH  G )  C_  ( R  vH  ( F  vH  ( G  vH  R ) ) )
38 ss2in 3303 . . . . . 6  |-  ( ( ( ( A  vH  B )  i^i  ( C  vH  D ) ) 
C_  ( ( R  vH  ( A  vH  ( B  vH  R ) ) )  i^i  ( R  vH  ( C  vH  ( D  vH  R ) ) ) )  /\  ( F  vH  G ) 
C_  ( R  vH  ( F  vH  ( G  vH  R ) ) ) )  ->  (
( ( A  vH  B )  i^i  ( C  vH  D ) )  i^i  ( F  vH  G ) )  C_  ( ( ( R  vH  ( A  vH  ( B  vH  R ) ) )  i^i  ( R  vH  ( C  vH  ( D  vH  R ) ) ) )  i^i  ( R  vH  ( F  vH  ( G  vH  R ) ) ) ) )
3928, 37, 38mp2an 656 . . . . 5  |-  ( ( ( A  vH  B
)  i^i  ( C  vH  D ) )  i^i  ( F  vH  G
) )  C_  (
( ( R  vH  ( A  vH  ( B  vH  R ) ) )  i^i  ( R  vH  ( C  vH  ( D  vH  R ) ) ) )  i^i  ( R  vH  ( F  vH  ( G  vH  R ) ) ) )
40 ss2in 3303 . . . . 5  |-  ( ( ( ( ( A  vH  C )  vH  F )  vH  R
)  C_  ( R  vH  ( ( A  vH  C )  vH  F
) )  /\  (
( ( A  vH  B )  i^i  ( C  vH  D ) )  i^i  ( F  vH  G ) )  C_  ( ( ( R  vH  ( A  vH  ( B  vH  R ) ) )  i^i  ( R  vH  ( C  vH  ( D  vH  R ) ) ) )  i^i  ( R  vH  ( F  vH  ( G  vH  R ) ) ) ) )  ->  (
( ( ( A  vH  C )  vH  F )  vH  R
)  i^i  ( (
( A  vH  B
)  i^i  ( C  vH  D ) )  i^i  ( F  vH  G
) ) )  C_  ( ( R  vH  ( ( A  vH  C )  vH  F
) )  i^i  (
( ( R  vH  ( A  vH  ( B  vH  R ) ) )  i^i  ( R  vH  ( C  vH  ( D  vH  R ) ) ) )  i^i  ( R  vH  ( F  vH  ( G  vH  R ) ) ) ) ) )
418, 39, 40mp2an 656 . . . 4  |-  ( ( ( ( A  vH  C )  vH  F
)  vH  R )  i^i  ( ( ( A  vH  B )  i^i  ( C  vH  D
) )  i^i  ( F  vH  G ) ) )  C_  ( ( R  vH  ( ( A  vH  C )  vH  F ) )  i^i  ( ( ( R  vH  ( A  vH  ( B  vH  R ) ) )  i^i  ( R  vH  ( C  vH  ( D  vH  R ) ) ) )  i^i  ( R  vH  ( F  vH  ( G  vH  R ) ) ) ) )
4215, 24chincli 21869 . . . . . . 7  |-  ( ( A  vH  ( B  vH  R ) )  i^i  ( C  vH  ( D  vH  R ) ) )  e.  CH
4342, 35chincli 21869 . . . . . 6  |-  ( ( ( A  vH  ( B  vH  R ) )  i^i  ( C  vH  ( D  vH  R ) ) )  i^i  ( F  vH  ( G  vH  R ) ) )  e.  CH
44 mayetes3.x . . . . . . . . . . 11  |-  X  =  ( ( A  vH  C )  vH  F
)
4544, 5eqeltri 2323 . . . . . . . . . 10  |-  X  e. 
CH
4645choccli 21716 . . . . . . . . 9  |-  ( _|_ `  X )  e.  CH
47 mayetes3.rx . . . . . . . . 9  |-  R  C_  ( _|_ `  X )
486, 46, 47lecmii 22030 . . . . . . . 8  |-  R  C_H  ( _|_ `  X )
496, 45cmcm2i 22020 . . . . . . . 8  |-  ( R  C_H  X  <->  R  C_H  ( _|_ `  X ) )
5048, 49mpbir 202 . . . . . . 7  |-  R  C_H  X
5150, 44breqtri 3943 . . . . . 6  |-  R  C_H  ( ( A  vH  C )  vH  F
)
526, 9chub2i 21879 . . . . . . . . . 10  |-  R  C_  ( B  vH  R )
5314, 1chub2i 21879 . . . . . . . . . 10  |-  ( B  vH  R )  C_  ( A  vH  ( B  vH  R ) )
5452, 53sstri 3109 . . . . . . . . 9  |-  R  C_  ( A  vH  ( B  vH  R ) )
556, 15, 54lecmii 22030 . . . . . . . 8  |-  R  C_H  ( A  vH  ( B  vH  R ) )
566, 18chub2i 21879 . . . . . . . . . 10  |-  R  C_  ( D  vH  R )
5723, 2chub2i 21879 . . . . . . . . . 10  |-  ( D  vH  R )  C_  ( C  vH  ( D  vH  R ) )
5856, 57sstri 3109 . . . . . . . . 9  |-  R  C_  ( C  vH  ( D  vH  R ) )
596, 24, 58lecmii 22030 . . . . . . . 8  |-  R  C_H  ( C  vH  ( D  vH  R ) )
606, 15, 24, 55, 59cm2mi 22053 . . . . . . 7  |-  R  C_H  ( ( A  vH  ( B  vH  R ) )  i^i  ( C  vH  ( D  vH  R ) ) )
616, 29chub2i 21879 . . . . . . . . 9  |-  R  C_  ( G  vH  R )
6234, 4chub2i 21879 . . . . . . . . 9  |-  ( G  vH  R )  C_  ( F  vH  ( G  vH  R ) )
6361, 62sstri 3109 . . . . . . . 8  |-  R  C_  ( F  vH  ( G  vH  R ) )
646, 35, 63lecmii 22030 . . . . . . 7  |-  R  C_H  ( F  vH  ( G  vH  R ) )
656, 42, 35, 60, 64cm2mi 22053 . . . . . 6  |-  R  C_H  ( ( ( A  vH  ( B  vH  R ) )  i^i  ( C  vH  ( D  vH  R ) ) )  i^i  ( F  vH  ( G  vH  R ) ) )
666, 5, 43, 51, 65fh3i 22050 . . . . 5  |-  ( R  vH  ( ( ( A  vH  C )  vH  F )  i^i  ( ( ( A  vH  ( B  vH  R ) )  i^i  ( C  vH  ( D  vH  R ) ) )  i^i  ( F  vH  ( G  vH  R ) ) ) ) )  =  ( ( R  vH  (
( A  vH  C
)  vH  F )
)  i^i  ( R  vH  ( ( ( A  vH  ( B  vH  R ) )  i^i  ( C  vH  ( D  vH  R ) ) )  i^i  ( F  vH  ( G  vH  R ) ) ) ) )
676, 42, 35, 60, 64fh3i 22050 . . . . . . 7  |-  ( R  vH  ( ( ( A  vH  ( B  vH  R ) )  i^i  ( C  vH  ( D  vH  R ) ) )  i^i  ( F  vH  ( G  vH  R ) ) ) )  =  ( ( R  vH  ( ( A  vH  ( B  vH  R ) )  i^i  ( C  vH  ( D  vH  R ) ) ) )  i^i  ( R  vH  ( F  vH  ( G  vH  R ) ) ) )
686, 15, 24, 55, 59fh3i 22050 . . . . . . . 8  |-  ( R  vH  ( ( A  vH  ( B  vH  R ) )  i^i  ( C  vH  ( D  vH  R ) ) ) )  =  ( ( R  vH  ( A  vH  ( B  vH  R ) ) )  i^i  ( R  vH  ( C  vH  ( D  vH  R ) ) ) )
6968ineq1i 3274 . . . . . . 7  |-  ( ( R  vH  ( ( A  vH  ( B  vH  R ) )  i^i  ( C  vH  ( D  vH  R ) ) ) )  i^i  ( R  vH  ( F  vH  ( G  vH  R ) ) ) )  =  ( ( ( R  vH  ( A  vH  ( B  vH  R ) ) )  i^i  ( R  vH  ( C  vH  ( D  vH  R ) ) ) )  i^i  ( R  vH  ( F  vH  ( G  vH  R ) ) ) )
7067, 69eqtri 2273 . . . . . 6  |-  ( R  vH  ( ( ( A  vH  ( B  vH  R ) )  i^i  ( C  vH  ( D  vH  R ) ) )  i^i  ( F  vH  ( G  vH  R ) ) ) )  =  ( ( ( R  vH  ( A  vH  ( B  vH  R ) ) )  i^i  ( R  vH  ( C  vH  ( D  vH  R ) ) ) )  i^i  ( R  vH  ( F  vH  ( G  vH  R ) ) ) )
7170ineq2i 3275 . . . . 5  |-  ( ( R  vH  ( ( A  vH  C )  vH  F ) )  i^i  ( R  vH  ( ( ( A  vH  ( B  vH  R ) )  i^i  ( C  vH  ( D  vH  R ) ) )  i^i  ( F  vH  ( G  vH  R ) ) ) ) )  =  ( ( R  vH  (
( A  vH  C
)  vH  F )
)  i^i  ( (
( R  vH  ( A  vH  ( B  vH  R ) ) )  i^i  ( R  vH  ( C  vH  ( D  vH  R ) ) ) )  i^i  ( R  vH  ( F  vH  ( G  vH  R ) ) ) ) )
7266, 71eqtr2i 2274 . . . 4  |-  ( ( R  vH  ( ( A  vH  C )  vH  F ) )  i^i  ( ( ( R  vH  ( A  vH  ( B  vH  R ) ) )  i^i  ( R  vH  ( C  vH  ( D  vH  R ) ) ) )  i^i  ( R  vH  ( F  vH  ( G  vH  R ) ) ) ) )  =  ( R  vH  ( ( ( A  vH  C )  vH  F )  i^i  (
( ( A  vH  ( B  vH  R ) )  i^i  ( C  vH  ( D  vH  R ) ) )  i^i  ( F  vH  ( G  vH  R ) ) ) ) )
7341, 72sseqtri 3131 . . 3  |-  ( ( ( ( A  vH  C )  vH  F
)  vH  R )  i^i  ( ( ( A  vH  B )  i^i  ( C  vH  D
) )  i^i  ( F  vH  G ) ) )  C_  ( R  vH  ( ( ( A  vH  C )  vH  F )  i^i  (
( ( A  vH  ( B  vH  R ) )  i^i  ( C  vH  ( D  vH  R ) ) )  i^i  ( F  vH  ( G  vH  R ) ) ) ) )
749, 18chjcli 21866 . . . . . 6  |-  ( B  vH  D )  e. 
CH
7574, 29chjcli 21866 . . . . 5  |-  ( ( B  vH  D )  vH  G )  e. 
CH
766, 75chub2i 21879 . . . 4  |-  R  C_  ( ( ( B  vH  D )  vH  G )  vH  R
)
77 mayetes3.ac . . . . 5  |-  A  C_  ( _|_ `  C )
78 mayetes3.af . . . . 5  |-  A  C_  ( _|_ `  F )
79 mayetes3.cf . . . . 5  |-  C  C_  ( _|_ `  F )
80 mayetes3.ab . . . . . . 7  |-  A  C_  ( _|_ `  B )
811, 2chub1i 21878 . . . . . . . . . . 11  |-  A  C_  ( A  vH  C )
823, 4chub1i 21878 . . . . . . . . . . . 12  |-  ( A  vH  C )  C_  ( ( A  vH  C )  vH  F
)
8382, 44sseqtr4i 3132 . . . . . . . . . . 11  |-  ( A  vH  C )  C_  X
8481, 83sstri 3109 . . . . . . . . . 10  |-  A  C_  X
851, 45chsscon3i 21870 . . . . . . . . . 10  |-  ( A 
C_  X  <->  ( _|_ `  X )  C_  ( _|_ `  A ) )
8684, 85mpbi 201 . . . . . . . . 9  |-  ( _|_ `  X )  C_  ( _|_ `  A )
8747, 86sstri 3109 . . . . . . . 8  |-  R  C_  ( _|_ `  A )
886, 1chsscon2i 21872 . . . . . . . 8  |-  ( R 
C_  ( _|_ `  A
)  <->  A  C_  ( _|_ `  R ) )
8987, 88mpbi 201 . . . . . . 7  |-  A  C_  ( _|_ `  R )
9080, 89ssini 3299 . . . . . 6  |-  A  C_  ( ( _|_ `  B
)  i^i  ( _|_ `  R ) )
919, 6chdmj1i 21890 . . . . . 6  |-  ( _|_ `  ( B  vH  R
) )  =  ( ( _|_ `  B
)  i^i  ( _|_ `  R ) )
9290, 91sseqtr4i 3132 . . . . 5  |-  A  C_  ( _|_ `  ( B  vH  R ) )
93 mayetes3.cd . . . . . . 7  |-  C  C_  ( _|_ `  D )
942, 1chub2i 21879 . . . . . . . . . . 11  |-  C  C_  ( A  vH  C )
9594, 83sstri 3109 . . . . . . . . . 10  |-  C  C_  X
962, 45chsscon3i 21870 . . . . . . . . . 10  |-  ( C 
C_  X  <->  ( _|_ `  X )  C_  ( _|_ `  C ) )
9795, 96mpbi 201 . . . . . . . . 9  |-  ( _|_ `  X )  C_  ( _|_ `  C )
9847, 97sstri 3109 . . . . . . . 8  |-  R  C_  ( _|_ `  C )
996, 2chsscon2i 21872 . . . . . . . 8  |-  ( R 
C_  ( _|_ `  C
)  <->  C  C_  ( _|_ `  R ) )
10098, 99mpbi 201 . . . . . . 7  |-  C  C_  ( _|_ `  R )
10193, 100ssini 3299 . . . . . 6  |-  C  C_  ( ( _|_ `  D
)  i^i  ( _|_ `  R ) )
10218, 6chdmj1i 21890 . . . . . 6  |-  ( _|_ `  ( D  vH  R
) )  =  ( ( _|_ `  D
)  i^i  ( _|_ `  R ) )
103101, 102sseqtr4i 3132 . . . . 5  |-  C  C_  ( _|_ `  ( D  vH  R ) )
104 mayetes3.fg . . . . . . 7  |-  F  C_  ( _|_ `  G )
1054, 3chub2i 21879 . . . . . . . . . . 11  |-  F  C_  ( ( A  vH  C )  vH  F
)
106105, 44sseqtr4i 3132 . . . . . . . . . 10  |-  F  C_  X
1074, 45chsscon3i 21870 . . . . . . . . . 10  |-  ( F 
C_  X  <->  ( _|_ `  X )  C_  ( _|_ `  F ) )
108106, 107mpbi 201 . . . . . . . . 9  |-  ( _|_ `  X )  C_  ( _|_ `  F )
10947, 108sstri 3109 . . . . . . . 8  |-  R  C_  ( _|_ `  F )
1106, 4chsscon2i 21872 . . . . . . . 8  |-  ( R 
C_  ( _|_ `  F
)  <->  F  C_  ( _|_ `  R ) )
111109, 110mpbi 201 . . . . . . 7  |-  F  C_  ( _|_ `  R )
112104, 111ssini 3299 . . . . . 6  |-  F  C_  ( ( _|_ `  G
)  i^i  ( _|_ `  R ) )
11329, 6chdmj1i 21890 . . . . . 6  |-  ( _|_ `  ( G  vH  R
) )  =  ( ( _|_ `  G
)  i^i  ( _|_ `  R ) )
114112, 113sseqtr4i 3132 . . . . 5  |-  F  C_  ( _|_ `  ( G  vH  R ) )
115 eqid 2253 . . . . 5  |-  ( ( A  vH  C )  vH  F )  =  ( ( A  vH  C )  vH  F
)
116 eqid 2253 . . . . 5  |-  ( ( ( A  vH  ( B  vH  R ) )  i^i  ( C  vH  ( D  vH  R ) ) )  i^i  ( F  vH  ( G  vH  R ) ) )  =  ( ( ( A  vH  ( B  vH  R ) )  i^i  ( C  vH  ( D  vH  R ) ) )  i^i  ( F  vH  ( G  vH  R ) ) )
11774, 29, 6chjjdiri 21933 . . . . . 6  |-  ( ( ( B  vH  D
)  vH  G )  vH  R )  =  ( ( ( B  vH  D )  vH  R
)  vH  ( G  vH  R ) )
1189, 18, 6chjjdiri 21933 . . . . . . 7  |-  ( ( B  vH  D )  vH  R )  =  ( ( B  vH  R )  vH  ( D  vH  R ) )
119118oveq1i 5720 . . . . . 6  |-  ( ( ( B  vH  D
)  vH  R )  vH  ( G  vH  R
) )  =  ( ( ( B  vH  R )  vH  ( D  vH  R ) )  vH  ( G  vH  R ) )
120117, 119eqtri 2273 . . . . 5  |-  ( ( ( B  vH  D
)  vH  G )  vH  R )  =  ( ( ( B  vH  R )  vH  ( D  vH  R ) )  vH  ( G  vH  R ) )
1211, 14, 2, 23, 4, 34, 77, 78, 79, 92, 103, 114, 115, 116, 120mayete3i 22155 . . . 4  |-  ( ( ( A  vH  C
)  vH  F )  i^i  ( ( ( A  vH  ( B  vH  R ) )  i^i  ( C  vH  ( D  vH  R ) ) )  i^i  ( F  vH  ( G  vH  R ) ) ) )  C_  ( (
( B  vH  D
)  vH  G )  vH  R )
1225, 43chincli 21869 . . . . 5  |-  ( ( ( A  vH  C
)  vH  F )  i^i  ( ( ( A  vH  ( B  vH  R ) )  i^i  ( C  vH  ( D  vH  R ) ) )  i^i  ( F  vH  ( G  vH  R ) ) ) )  e.  CH
12375, 6chjcli 21866 . . . . 5  |-  ( ( ( B  vH  D
)  vH  G )  vH  R )  e.  CH
1246, 122, 123chlubii 21881 . . . 4  |-  ( ( R  C_  ( (
( B  vH  D
)  vH  G )  vH  R )  /\  (
( ( A  vH  C )  vH  F
)  i^i  ( (
( A  vH  ( B  vH  R ) )  i^i  ( C  vH  ( D  vH  R ) ) )  i^i  ( F  vH  ( G  vH  R ) ) ) )  C_  ( (
( B  vH  D
)  vH  G )  vH  R ) )  -> 
( R  vH  (
( ( A  vH  C )  vH  F
)  i^i  ( (
( A  vH  ( B  vH  R ) )  i^i  ( C  vH  ( D  vH  R ) ) )  i^i  ( F  vH  ( G  vH  R ) ) ) ) )  C_  (
( ( B  vH  D )  vH  G
)  vH  R )
)
12576, 121, 124mp2an 656 . . 3  |-  ( R  vH  ( ( ( A  vH  C )  vH  F )  i^i  ( ( ( A  vH  ( B  vH  R ) )  i^i  ( C  vH  ( D  vH  R ) ) )  i^i  ( F  vH  ( G  vH  R ) ) ) ) )  C_  (
( ( B  vH  D )  vH  G
)  vH  R )
12673, 125sstri 3109 . 2  |-  ( ( ( ( A  vH  C )  vH  F
)  vH  R )  i^i  ( ( ( A  vH  B )  i^i  ( C  vH  D
) )  i^i  ( F  vH  G ) ) )  C_  ( (
( B  vH  D
)  vH  G )  vH  R )
12744oveq1i 5720 . . 3  |-  ( X  vH  R )  =  ( ( ( A  vH  C )  vH  F )  vH  R
)
128 mayetes3.y . . 3  |-  Y  =  ( ( ( A  vH  B )  i^i  ( C  vH  D
) )  i^i  ( F  vH  G ) )
129127, 128ineq12i 3276 . 2  |-  ( ( X  vH  R )  i^i  Y )  =  ( ( ( ( A  vH  C )  vH  F )  vH  R )  i^i  (
( ( A  vH  B )  i^i  ( C  vH  D ) )  i^i  ( F  vH  G ) ) )
130 mayetes3.z . . 3  |-  Z  =  ( ( B  vH  D )  vH  G
)
131130oveq1i 5720 . 2  |-  ( Z  vH  R )  =  ( ( ( B  vH  D )  vH  G )  vH  R
)
132126, 129, 1313sstr4i 3138 1  |-  ( ( X  vH  R )  i^i  Y )  C_  ( Z  vH  R )
Colors of variables: wff set class
Syntax hints:    = wceq 1619    e. wcel 1621    i^i cin 3077    C_ wss 3078   class class class wbr 3920   ` cfv 4592  (class class class)co 5710   CHcch 21339   _|_cort 21340    vH chj 21343    C_H ccm 21346
This theorem was proved from axioms:  ax-1 7  ax-2 8  ax-3 9  ax-mp 10  ax-5 1533  ax-6 1534  ax-7 1535  ax-gen 1536  ax-8 1623  ax-11 1624  ax-13 1625  ax-14 1626  ax-17 1628  ax-12o 1664  ax-10 1678  ax-9 1684  ax-4 1692  ax-16 1926  ax-ext 2234  ax-rep 4028  ax-sep 4038  ax-nul 4046  ax-pow 4082  ax-pr 4108  ax-un 4403  ax-inf2 7226  ax-cc 7945  ax-cnex 8673  ax-resscn 8674  ax-1cn 8675  ax-icn 8676  ax-addcl 8677  ax-addrcl 8678  ax-mulcl 8679  ax-mulrcl 8680  ax-mulcom 8681  ax-addass 8682  ax-mulass 8683  ax-distr 8684  ax-i2m1 8685  ax-1ne0 8686  ax-1rid 8687  ax-rnegex 8688  ax-rrecex 8689  ax-cnre 8690  ax-pre-lttri 8691  ax-pre-lttrn 8692  ax-pre-ltadd 8693  ax-pre-mulgt0 8694  ax-pre-sup 8695  ax-addf 8696  ax-mulf 8697  ax-hilex 21409  ax-hfvadd 21410  ax-hvcom 21411  ax-hvass 21412  ax-hv0cl 21413  ax-hvaddid 21414  ax-hfvmul 21415  ax-hvmulid 21416  ax-hvmulass 21417  ax-hvdistr1 21418  ax-hvdistr2 21419  ax-hvmul0 21420  ax-hfi 21488  ax-his1 21491  ax-his2 21492  ax-his3 21493  ax-his4 21494  ax-hcompl 21611
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3or 940  df-3an 941  df-tru 1315  df-ex 1538  df-nf 1540  df-sb 1883  df-eu 2118  df-mo 2119  df-clab 2240  df-cleq 2246  df-clel 2249  df-nfc 2374  df-ne 2414  df-nel 2415  df-ral 2513  df-rex 2514  df-reu 2515  df-rab 2516  df-v 2729  df-sbc 2922  df-csb 3010  df-dif 3081  df-un 3083  df-in 3085  df-ss 3089  df-pss 3091  df-nul 3363  df-if 3471  df-pw 3532  df-sn 3550  df-pr 3551  df-tp 3552  df-op 3553  df-uni 3728  df-int 3761  df-iun 3805  df-iin 3806  df-br 3921  df-opab 3975  df-mpt 3976  df-tr 4011  df-eprel 4198  df-id 4202  df-po 4207  df-so 4208  df-fr 4245  df-se 4246  df-we 4247  df-ord 4288  df-on 4289  df-lim 4290  df-suc 4291  df-om 4548  df-xp 4594  df-rel 4595  df-cnv 4596  df-co 4597  df-dm 4598  df-rn 4599  df-res 4600  df-ima 4601  df-fun 4602  df-fn 4603  df-f 4604  df-f1 4605  df-fo 4606  df-f1o 4607  df-fv 4608  df-isom 4609  df-ov 5713  df-oprab 5714  df-mpt2 5715  df-of 5930  df-1st 5974  df-2nd 5975  df-iota 6143  df-riota 6190  df-recs 6274  df-rdg 6309  df-1o 6365  df-2o 6366  df-oadd 6369  df-omul 6370  df-er 6546  df-map 6660  df-pm 6661  df-ixp 6704  df-en 6750  df-dom 6751  df-sdom 6752  df-fin 6753  df-fi 7049  df-sup 7078  df-oi 7109  df-card 7456  df-acn 7459  df-cda 7678  df-pnf 8749  df-mnf 8750  df-xr 8751  df-ltxr 8752  df-le 8753  df-sub 8919  df-neg 8920  df-div 9304  df-n 9627  df-2 9684  df-3 9685  df-4 9686  df-5 9687  df-6 9688  df-7 9689  df-8 9690  df-9 9691  df-10 9692  df-n0 9845  df-z 9904  df-dec 10004  df-uz 10110  df-q 10196  df-rp 10234  df-xneg 10331  df-xadd 10332  df-xmul 10333  df-ioo 10538  df-ico 10540  df-icc 10541  df-fz 10661  df-fzo 10749  df-fl 10803  df-seq 10925  df-exp 10983  df-hash 11216  df-cj 11461  df-re 11462  df-im 11463  df-sqr 11597  df-abs 11598  df-clim 11839  df-rlim 11840  df-sum 12036  df-struct 13024  df-ndx 13025  df-slot 13026  df-base 13027  df-sets 13028  df-ress 13029  df-plusg 13095  df-mulr 13096  df-starv 13097  df-sca 13098  df-vsca 13099  df-tset 13101  df-ple 13102  df-ds 13104  df-hom 13106  df-cco 13107  df-rest 13201  df-topn 13202  df-topgen 13218  df-pt 13219  df-prds 13222  df-xrs 13277  df-0g 13278  df-gsum 13279  df-qtop 13284  df-imas 13285  df-xps 13287  df-mre 13361  df-mrc 13362  df-acs 13363  df-mnd 14202  df-submnd 14251  df-mulg 14327  df-cntz 14628  df-cmn 14926  df-xmet 16205  df-met 16206  df-bl 16207  df-mopn 16208  df-cnfld 16210  df-top 16468  df-bases 16470  df-topon 16471  df-topsp 16472  df-cld 16588  df-ntr 16589  df-cls 16590  df-nei 16667  df-cn 16789  df-cnp 16790  df-lm 16791  df-haus 16875  df-tx 17089  df-hmeo 17278  df-fbas 17352  df-fg 17353  df-fil 17373  df-fm 17465  df-flim 17466  df-flf 17467  df-xms 17717  df-ms 17718  df-tms 17719  df-cfil 18513  df-cau 18514  df-cmet 18515  df-grpo 20688  df-gid 20689  df-ginv 20690  df-gdiv 20691  df-ablo 20779  df-subgo 20799  df-vc 20932  df-nv 20978  df-va 20981  df-ba 20982  df-sm 20983  df-0v 20984  df-vs 20985  df-nmcv 20986  df-ims 20987  df-dip 21104  df-ssp 21128  df-ph 21221  df-cbn 21272  df-hnorm 21378  df-hba 21379  df-hvsub 21381  df-hlim 21382  df-hcau 21383  df-sh 21616  df-ch 21631  df-oc 21661  df-ch0 21662  df-shs 21717  df-chj 21719  df-pjh 21804  df-cm 22010
  Copyright terms: Public domain W3C validator