MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mappwen Unicode version

Theorem mappwen 7623
Description: Power rule for cardinal arithmetic. Theorem 11.21 of [TakeutiZaring] p. 106. (Contributed by Mario Carneiro, 9-Mar-2013.) (Revised by Mario Carneiro, 27-Apr-2015.)
Assertion
Ref Expression
mappwen  |-  ( ( ( B  e.  dom  card  /\  om  ~<_  B )  /\  ( 2o  ~<_  A  /\  A  ~<_  ~P B ) )  ->  ( A  ^m  B )  ~~  ~P B )

Proof of Theorem mappwen
StepHypRef Expression
1 simprr 736 . . . . 5  |-  ( ( ( B  e.  dom  card  /\  om  ~<_  B )  /\  ( 2o  ~<_  A  /\  A  ~<_  ~P B ) )  ->  A  ~<_  ~P B
)
2 pw2eng 6853 . . . . . 6  |-  ( B  e.  dom  card  ->  ~P B  ~~  ( 2o 
^m  B ) )
32ad2antrr 709 . . . . 5  |-  ( ( ( B  e.  dom  card  /\  om  ~<_  B )  /\  ( 2o  ~<_  A  /\  A  ~<_  ~P B ) )  ->  ~P B  ~~  ( 2o  ^m  B ) )
4 domentr 6805 . . . . 5  |-  ( ( A  ~<_  ~P B  /\  ~P B  ~~  ( 2o  ^m  B ) )  ->  A  ~<_  ( 2o  ^m  B ) )
51, 3, 4syl2anc 645 . . . 4  |-  ( ( ( B  e.  dom  card  /\  om  ~<_  B )  /\  ( 2o  ~<_  A  /\  A  ~<_  ~P B ) )  ->  A  ~<_  ( 2o 
^m  B ) )
6 mapdom1 6911 . . . 4  |-  ( A  ~<_  ( 2o  ^m  B
)  ->  ( A  ^m  B )  ~<_  ( ( 2o  ^m  B )  ^m  B ) )
75, 6syl 17 . . 3  |-  ( ( ( B  e.  dom  card  /\  om  ~<_  B )  /\  ( 2o  ~<_  A  /\  A  ~<_  ~P B ) )  ->  ( A  ^m  B )  ~<_  ( ( 2o  ^m  B )  ^m  B ) )
8 2on 6373 . . . . . . 7  |-  2o  e.  On
98a1i 12 . . . . . 6  |-  ( ( ( B  e.  dom  card  /\  om  ~<_  B )  /\  ( 2o  ~<_  A  /\  A  ~<_  ~P B ) )  ->  2o  e.  On )
10 simpll 733 . . . . . 6  |-  ( ( ( B  e.  dom  card  /\  om  ~<_  B )  /\  ( 2o  ~<_  A  /\  A  ~<_  ~P B ) )  ->  B  e.  dom  card )
11 mapxpen 6912 . . . . . 6  |-  ( ( 2o  e.  On  /\  B  e.  dom  card  /\  B  e.  dom  card )  ->  (
( 2o  ^m  B
)  ^m  B )  ~~  ( 2o  ^m  ( B  X.  B ) ) )
129, 10, 10, 11syl3anc 1187 . . . . 5  |-  ( ( ( B  e.  dom  card  /\  om  ~<_  B )  /\  ( 2o  ~<_  A  /\  A  ~<_  ~P B ) )  ->  ( ( 2o 
^m  B )  ^m  B )  ~~  ( 2o  ^m  ( B  X.  B ) ) )
138elexi 2736 . . . . . . 7  |-  2o  e.  _V
1413enref 6780 . . . . . 6  |-  2o  ~~  2o
15 infxpidm2 7528 . . . . . . 7  |-  ( ( B  e.  dom  card  /\ 
om  ~<_  B )  -> 
( B  X.  B
)  ~~  B )
1615adantr 453 . . . . . 6  |-  ( ( ( B  e.  dom  card  /\  om  ~<_  B )  /\  ( 2o  ~<_  A  /\  A  ~<_  ~P B ) )  ->  ( B  X.  B )  ~~  B
)
17 mapen 6910 . . . . . 6  |-  ( ( 2o  ~~  2o  /\  ( B  X.  B
)  ~~  B )  ->  ( 2o  ^m  ( B  X.  B ) ) 
~~  ( 2o  ^m  B ) )
1814, 16, 17sylancr 647 . . . . 5  |-  ( ( ( B  e.  dom  card  /\  om  ~<_  B )  /\  ( 2o  ~<_  A  /\  A  ~<_  ~P B ) )  ->  ( 2o  ^m  ( B  X.  B
) )  ~~  ( 2o  ^m  B ) )
19 entr 6798 . . . . 5  |-  ( ( ( ( 2o  ^m  B )  ^m  B
)  ~~  ( 2o  ^m  ( B  X.  B
) )  /\  ( 2o  ^m  ( B  X.  B ) )  ~~  ( 2o  ^m  B ) )  ->  ( ( 2o  ^m  B )  ^m  B )  ~~  ( 2o  ^m  B ) )
2012, 18, 19syl2anc 645 . . . 4  |-  ( ( ( B  e.  dom  card  /\  om  ~<_  B )  /\  ( 2o  ~<_  A  /\  A  ~<_  ~P B ) )  ->  ( ( 2o 
^m  B )  ^m  B )  ~~  ( 2o  ^m  B ) )
21 ensym 6796 . . . . 5  |-  ( ~P B  ~~  ( 2o 
^m  B )  -> 
( 2o  ^m  B
)  ~~  ~P B
)
223, 21syl 17 . . . 4  |-  ( ( ( B  e.  dom  card  /\  om  ~<_  B )  /\  ( 2o  ~<_  A  /\  A  ~<_  ~P B ) )  ->  ( 2o  ^m  B )  ~~  ~P B )
23 entr 6798 . . . 4  |-  ( ( ( ( 2o  ^m  B )  ^m  B
)  ~~  ( 2o  ^m  B )  /\  ( 2o  ^m  B )  ~~  ~P B )  ->  (
( 2o  ^m  B
)  ^m  B )  ~~  ~P B )
2420, 22, 23syl2anc 645 . . 3  |-  ( ( ( B  e.  dom  card  /\  om  ~<_  B )  /\  ( 2o  ~<_  A  /\  A  ~<_  ~P B ) )  ->  ( ( 2o 
^m  B )  ^m  B )  ~~  ~P B )
25 domentr 6805 . . 3  |-  ( ( ( A  ^m  B
)  ~<_  ( ( 2o 
^m  B )  ^m  B )  /\  (
( 2o  ^m  B
)  ^m  B )  ~~  ~P B )  -> 
( A  ^m  B
)  ~<_  ~P B )
267, 24, 25syl2anc 645 . 2  |-  ( ( ( B  e.  dom  card  /\  om  ~<_  B )  /\  ( 2o  ~<_  A  /\  A  ~<_  ~P B ) )  ->  ( A  ^m  B )  ~<_  ~P B
)
27 mapdom1 6911 . . . 4  |-  ( 2o  ~<_  A  ->  ( 2o  ^m  B )  ~<_  ( A  ^m  B ) )
2827ad2antrl 711 . . 3  |-  ( ( ( B  e.  dom  card  /\  om  ~<_  B )  /\  ( 2o  ~<_  A  /\  A  ~<_  ~P B ) )  ->  ( 2o  ^m  B )  ~<_  ( A  ^m  B ) )
29 endomtr 6804 . . 3  |-  ( ( ~P B  ~~  ( 2o  ^m  B )  /\  ( 2o  ^m  B )  ~<_  ( A  ^m  B
) )  ->  ~P B  ~<_  ( A  ^m  B ) )
303, 28, 29syl2anc 645 . 2  |-  ( ( ( B  e.  dom  card  /\  om  ~<_  B )  /\  ( 2o  ~<_  A  /\  A  ~<_  ~P B ) )  ->  ~P B  ~<_  ( A  ^m  B ) )
31 sbth 6866 . 2  |-  ( ( ( A  ^m  B
)  ~<_  ~P B  /\  ~P B  ~<_  ( A  ^m  B ) )  -> 
( A  ^m  B
)  ~~  ~P B
)
3226, 30, 31syl2anc 645 1  |-  ( ( ( B  e.  dom  card  /\  om  ~<_  B )  /\  ( 2o  ~<_  A  /\  A  ~<_  ~P B ) )  ->  ( A  ^m  B )  ~~  ~P B )
Colors of variables: wff set class
Syntax hints:    -> wi 6    /\ wa 360    e. wcel 1621   ~Pcpw 3530   class class class wbr 3920   Oncon0 4285   omcom 4547    X. cxp 4578   dom cdm 4580  (class class class)co 5710   2oc2o 6359    ^m cmap 6658    ~~ cen 6746    ~<_ cdom 6747   cardccrd 7452
This theorem is referenced by:  alephexp1  8081  hauspwdom  17059
This theorem was proved from axioms:  ax-1 7  ax-2 8  ax-3 9  ax-mp 10  ax-5 1533  ax-6 1534  ax-7 1535  ax-gen 1536  ax-8 1623  ax-11 1624  ax-13 1625  ax-14 1626  ax-17 1628  ax-12o 1664  ax-10 1678  ax-9 1684  ax-4 1692  ax-16 1926  ax-ext 2234  ax-rep 4028  ax-sep 4038  ax-nul 4046  ax-pow 4082  ax-pr 4108  ax-un 4403  ax-inf2 7226
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3or 940  df-3an 941  df-tru 1315  df-ex 1538  df-nf 1540  df-sb 1883  df-eu 2118  df-mo 2119  df-clab 2240  df-cleq 2246  df-clel 2249  df-nfc 2374  df-ne 2414  df-ral 2513  df-rex 2514  df-reu 2515  df-rab 2516  df-v 2729  df-sbc 2922  df-csb 3010  df-dif 3081  df-un 3083  df-in 3085  df-ss 3089  df-pss 3091  df-nul 3363  df-if 3471  df-pw 3532  df-sn 3550  df-pr 3551  df-tp 3552  df-op 3553  df-uni 3728  df-int 3761  df-iun 3805  df-br 3921  df-opab 3975  df-mpt 3976  df-tr 4011  df-eprel 4198  df-id 4202  df-po 4207  df-so 4208  df-fr 4245  df-se 4246  df-we 4247  df-ord 4288  df-on 4289  df-lim 4290  df-suc 4291  df-om 4548  df-xp 4594  df-rel 4595  df-cnv 4596  df-co 4597  df-dm 4598  df-rn 4599  df-res 4600  df-ima 4601  df-fun 4602  df-fn 4603  df-f 4604  df-f1 4605  df-fo 4606  df-f1o 4607  df-fv 4608  df-isom 4609  df-ov 5713  df-oprab 5714  df-mpt2 5715  df-1st 5974  df-2nd 5975  df-iota 6143  df-riota 6190  df-recs 6274  df-rdg 6309  df-1o 6365  df-2o 6366  df-oadd 6369  df-er 6546  df-map 6660  df-en 6750  df-dom 6751  df-sdom 6752  df-fin 6753  df-oi 7109  df-card 7456
  Copyright terms: Public domain W3C validator