Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ltrnel Unicode version

Theorem ltrnel 29017
Description: The lattice translation of an atom not under the fiducial co-atom is also an atom not under the fiducial co-atom. Remark below Lemma B in [Crawley] p. 112. (Contributed by NM, 22-May-2012.)
Hypotheses
Ref Expression
ltrnel.l  |-  .<_  =  ( le `  K )
ltrnel.a  |-  A  =  ( Atoms `  K )
ltrnel.h  |-  H  =  ( LHyp `  K
)
ltrnel.t  |-  T  =  ( ( LTrn `  K
) `  W )
Assertion
Ref Expression
ltrnel  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  ->  ( ( F `  P )  e.  A  /\  -.  ( F `  P )  .<_  W ) )

Proof of Theorem ltrnel
StepHypRef Expression
1 simp3l 988 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  ->  P  e.  A )
2 eqid 2253 . . . . . 6  |-  ( Base `  K )  =  (
Base `  K )
3 ltrnel.a . . . . . 6  |-  A  =  ( Atoms `  K )
42, 3atbase 28168 . . . . 5  |-  ( P  e.  A  ->  P  e.  ( Base `  K
) )
54adantr 453 . . . 4  |-  ( ( P  e.  A  /\  -.  P  .<_  W )  ->  P  e.  (
Base `  K )
)
6 ltrnel.h . . . . 5  |-  H  =  ( LHyp `  K
)
7 ltrnel.t . . . . 5  |-  T  =  ( ( LTrn `  K
) `  W )
82, 3, 6, 7ltrnatb 29015 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  P  e.  ( Base `  K ) )  ->  ( P  e.  A  <->  ( F `  P )  e.  A
) )
95, 8syl3an3 1222 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  ->  ( P  e.  A  <->  ( F `  P )  e.  A
) )
101, 9mpbid 203 . 2  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  ->  ( F `  P )  e.  A
)
11 simp3r 989 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  ->  -.  P  .<_  W )
12 simp1 960 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  ->  ( K  e.  HL  /\  W  e.  H ) )
13 simp2 961 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  ->  F  e.  T )
141, 4syl 17 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  ->  P  e.  ( Base `  K )
)
15 simp1r 985 . . . . . 6  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  ->  W  e.  H )
162, 6lhpbase 28876 . . . . . 6  |-  ( W  e.  H  ->  W  e.  ( Base `  K
) )
1715, 16syl 17 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  ->  W  e.  ( Base `  K )
)
18 ltrnel.l . . . . . 6  |-  .<_  =  ( le `  K )
192, 18, 6, 7ltrnle 29007 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  ( P  e.  (
Base `  K )  /\  W  e.  ( Base `  K ) ) )  ->  ( P  .<_  W  <->  ( F `  P )  .<_  ( F `
 W ) ) )
2012, 13, 14, 17, 19syl112anc 1191 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  ->  ( P  .<_  W  <->  ( F `  P )  .<_  ( F `
 W ) ) )
21 simp1l 984 . . . . . . . 8  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  ->  K  e.  HL )
22 hllat 28242 . . . . . . . 8  |-  ( K  e.  HL  ->  K  e.  Lat )
2321, 22syl 17 . . . . . . 7  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  ->  K  e.  Lat )
242, 18latref 14003 . . . . . . 7  |-  ( ( K  e.  Lat  /\  W  e.  ( Base `  K ) )  ->  W  .<_  W )
2523, 17, 24syl2anc 645 . . . . . 6  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  ->  W  .<_  W )
262, 18, 6, 7ltrnval1 29012 . . . . . 6  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  ( W  e.  (
Base `  K )  /\  W  .<_  W ) )  ->  ( F `  W )  =  W )
2712, 13, 17, 25, 26syl112anc 1191 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  ->  ( F `  W )  =  W )
2827breq2d 3932 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  ->  ( ( F `  P )  .<_  ( F `  W
)  <->  ( F `  P )  .<_  W ) )
2920, 28bitrd 246 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  ->  ( P  .<_  W  <->  ( F `  P )  .<_  W ) )
3011, 29mtbid 293 . 2  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  ->  -.  ( F `  P )  .<_  W )
3110, 30jca 520 1  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  ->  ( ( F `  P )  e.  A  /\  -.  ( F `  P )  .<_  W ) )
Colors of variables: wff set class
Syntax hints:   -. wn 5    -> wi 6    <-> wb 178    /\ wa 360    /\ w3a 939    = wceq 1619    e. wcel 1621   class class class wbr 3920   ` cfv 4592   Basecbs 13022   lecple 13089   Latclat 13995   Atomscatm 28142   HLchlt 28229   LHypclh 28862   LTrncltrn 28979
This theorem is referenced by:  ltrncoelN  29021  trlcnv  29043  trljat2  29045  cdlemc3  29071  cdlemc5  29073  cdlemd9  29084  cdlemeiota  29463  cdlemg1cex  29466  cdlemg2l  29481  cdlemg2m  29482  cdlemg7fvbwN  29485  cdlemg4a  29486  cdlemg4b1  29487  cdlemg4b2  29488  cdlemg4d  29491  cdlemg4e  29492  cdlemg4  29495  cdlemg6e  29500  cdlemg7fvN  29502  cdlemg8b  29506  cdlemg8c  29507  cdlemg10bALTN  29514  cdlemg10a  29518  cdlemg12d  29524  cdlemg13a  29529  cdlemg13  29530  cdlemg14f  29531  cdlemg17b  29540  cdlemg17f  29544  cdlemg17i  29547  trlcoabs  29599  trlcoabs2N  29600  trlcolem  29604  cdlemg43  29608  cdlemg44b  29610  cdlemi2  29697  cdlemi  29698  cdlemk2  29710  cdlemk3  29711  cdlemk4  29712  cdlemk8  29716  cdlemk9  29717  cdlemk9bN  29718  cdlemki  29719  cdlemksv2  29725  cdlemk12  29728  cdlemkoatnle  29729  cdlemk12u  29750  cdlemkfid1N  29799  cdlemk47  29827  dia2dimlem1  29943  dia2dimlem2  29944  dia2dimlem3  29945  dia2dimlem6  29948  cdlemm10N  29997  dih1dimatlem0  30207  dih1dimatlem  30208
This theorem was proved from axioms:  ax-1 7  ax-2 8  ax-3 9  ax-mp 10  ax-5 1533  ax-6 1534  ax-7 1535  ax-gen 1536  ax-8 1623  ax-11 1624  ax-13 1625  ax-14 1626  ax-17 1628  ax-12o 1664  ax-10 1678  ax-9 1684  ax-4 1692  ax-16 1926  ax-ext 2234  ax-rep 4028  ax-sep 4038  ax-nul 4046  ax-pow 4082  ax-pr 4108  ax-un 4403
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3an 941  df-tru 1315  df-ex 1538  df-nf 1540  df-sb 1883  df-eu 2118  df-mo 2119  df-clab 2240  df-cleq 2246  df-clel 2249  df-nfc 2374  df-ne 2414  df-nel 2415  df-ral 2513  df-rex 2514  df-reu 2515  df-rab 2516  df-v 2729  df-sbc 2922  df-csb 3010  df-dif 3081  df-un 3083  df-in 3085  df-ss 3089  df-nul 3363  df-if 3471  df-pw 3532  df-sn 3550  df-pr 3551  df-op 3553  df-uni 3728  df-iun 3805  df-br 3921  df-opab 3975  df-mpt 3976  df-id 4202  df-xp 4594  df-rel 4595  df-cnv 4596  df-co 4597  df-dm 4598  df-rn 4599  df-res 4600  df-ima 4601  df-fun 4602  df-fn 4603  df-f 4604  df-f1 4605  df-fo 4606  df-f1o 4607  df-fv 4608  df-ov 5713  df-oprab 5714  df-mpt2 5715  df-iota 6143  df-undef 6182  df-riota 6190  df-map 6660  df-poset 13924  df-plt 13936  df-glb 13953  df-p0 13989  df-lat 13996  df-oposet 28055  df-ol 28057  df-oml 28058  df-covers 28145  df-ats 28146  df-atl 28177  df-cvlat 28201  df-hlat 28230  df-lhyp 28866  df-laut 28867  df-ldil 28982  df-ltrn 28983
  Copyright terms: Public domain W3C validator