Users' Mathboxes Mathbox for Steve Rodriguez < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lhe4.4ex1a Unicode version

Theorem lhe4.4ex1a 26712
Description: Example of the Fundamental Theorem of Calculus, part two (ftc2 19223):  S. ( 1 (,) 2 ) ( ( x ^ 2 )  -  3 )  _d x  =  -u ( 2  /  3
). Section 4.4 example 1a of [LarsonHostetlerEdwards] p. 311. (The book teaches ftc2 19223 as simply the "Fundamental Theorem of Calculus", then ftc1 19221 as the "Second Fundamental Theorem of Calculus".) (Contributed by Steve Rodriguez, 28-Oct-2015.) (Revised by Steve Rodriguez, 31-Oct-2015.)
Assertion
Ref Expression
lhe4.4ex1a  |-  S. ( 1 (,) 2 ) ( ( x ^
2 )  -  3 )  _d x  = 
-u ( 2  / 
3 )

Proof of Theorem lhe4.4ex1a
StepHypRef Expression
1 1re 8717 . . . . 5  |-  1  e.  RR
21a1i 12 . . . 4  |-  (  T. 
->  1  e.  RR )
3 2re 9695 . . . . 5  |-  2  e.  RR
43a1i 12 . . . 4  |-  (  T. 
->  2  e.  RR )
5 1lt2 9765 . . . . . 6  |-  1  <  2
61, 3, 5ltleii 8821 . . . . 5  |-  1  <_  2
76a1i 12 . . . 4  |-  (  T. 
->  1  <_  2 )
8 reex 8708 . . . . . . . 8  |-  RR  e.  _V
98prid1 3638 . . . . . . 7  |-  RR  e.  { RR ,  CC }
109a1i 12 . . . . . 6  |-  (  T. 
->  RR  e.  { RR ,  CC } )
11 recn 8707 . . . . . . . . . 10  |-  ( y  e.  RR  ->  y  e.  CC )
12 3nn0 9862 . . . . . . . . . . 11  |-  3  e.  NN0
13 expcl 10999 . . . . . . . . . . 11  |-  ( ( y  e.  CC  /\  3  e.  NN0 )  -> 
( y ^ 3 )  e.  CC )
1412, 13mpan2 655 . . . . . . . . . 10  |-  ( y  e.  CC  ->  (
y ^ 3 )  e.  CC )
1511, 14syl 17 . . . . . . . . 9  |-  ( y  e.  RR  ->  (
y ^ 3 )  e.  CC )
16 3cn 9698 . . . . . . . . . 10  |-  3  e.  CC
17 3ne0 9711 . . . . . . . . . 10  |-  3  =/=  0
18 divcl 9310 . . . . . . . . . 10  |-  ( ( ( y ^ 3 )  e.  CC  /\  3  e.  CC  /\  3  =/=  0 )  ->  (
( y ^ 3 )  /  3 )  e.  CC )
1916, 17, 18mp3an23 1274 . . . . . . . . 9  |-  ( ( y ^ 3 )  e.  CC  ->  (
( y ^ 3 )  /  3 )  e.  CC )
2015, 19syl 17 . . . . . . . 8  |-  ( y  e.  RR  ->  (
( y ^ 3 )  /  3 )  e.  CC )
21 mulcl 8701 . . . . . . . . 9  |-  ( ( 3  e.  CC  /\  y  e.  CC )  ->  ( 3  x.  y
)  e.  CC )
2216, 11, 21sylancr 647 . . . . . . . 8  |-  ( y  e.  RR  ->  (
3  x.  y )  e.  CC )
2320, 22subcld 9037 . . . . . . 7  |-  ( y  e.  RR  ->  (
( ( y ^
3 )  /  3
)  -  ( 3  x.  y ) )  e.  CC )
2423adantl 454 . . . . . 6  |-  ( (  T.  /\  y  e.  RR )  ->  (
( ( y ^
3 )  /  3
)  -  ( 3  x.  y ) )  e.  CC )
25 ovex 5735 . . . . . . 7  |-  ( ( y ^ 2 )  -  3 )  e. 
_V
2625a1i 12 . . . . . 6  |-  ( (  T.  /\  y  e.  RR )  ->  (
( y ^ 2 )  -  3 )  e.  _V )
2720adantl 454 . . . . . . 7  |-  ( (  T.  /\  y  e.  RR )  ->  (
( y ^ 3 )  /  3 )  e.  CC )
28 ovex 5735 . . . . . . . 8  |-  ( y ^ 2 )  e. 
_V
2928a1i 12 . . . . . . 7  |-  ( (  T.  /\  y  e.  RR )  ->  (
y ^ 2 )  e.  _V )
30 divrec2 9321 . . . . . . . . . . . . 13  |-  ( ( ( y ^ 3 )  e.  CC  /\  3  e.  CC  /\  3  =/=  0 )  ->  (
( y ^ 3 )  /  3 )  =  ( ( 1  /  3 )  x.  ( y ^ 3 ) ) )
3116, 17, 30mp3an23 1274 . . . . . . . . . . . 12  |-  ( ( y ^ 3 )  e.  CC  ->  (
( y ^ 3 )  /  3 )  =  ( ( 1  /  3 )  x.  ( y ^ 3 ) ) )
3215, 31syl 17 . . . . . . . . . . 11  |-  ( y  e.  RR  ->  (
( y ^ 3 )  /  3 )  =  ( ( 1  /  3 )  x.  ( y ^ 3 ) ) )
3332mpteq2ia 3999 . . . . . . . . . 10  |-  ( y  e.  RR  |->  ( ( y ^ 3 )  /  3 ) )  =  ( y  e.  RR  |->  ( ( 1  /  3 )  x.  ( y ^ 3 ) ) )
3433oveq2i 5721 . . . . . . . . 9  |-  ( RR 
_D  ( y  e.  RR  |->  ( ( y ^ 3 )  / 
3 ) ) )  =  ( RR  _D  ( y  e.  RR  |->  ( ( 1  / 
3 )  x.  (
y ^ 3 ) ) ) )
3515adantl 454 . . . . . . . . . . 11  |-  ( (  T.  /\  y  e.  RR )  ->  (
y ^ 3 )  e.  CC )
36 ovex 5735 . . . . . . . . . . . 12  |-  ( 3  x.  ( y ^
2 ) )  e. 
_V
3736a1i 12 . . . . . . . . . . 11  |-  ( (  T.  /\  y  e.  RR )  ->  (
3  x.  ( y ^ 2 ) )  e.  _V )
38 eqid 2253 . . . . . . . . . . . . . . 15  |-  ( y  e.  CC  |->  ( y ^ 3 ) )  =  ( y  e.  CC  |->  ( y ^
3 ) )
3938, 14fmpti 5535 . . . . . . . . . . . . . 14  |-  ( y  e.  CC  |->  ( y ^ 3 ) ) : CC --> CC
40 ssid 3118 . . . . . . . . . . . . . 14  |-  CC  C_  CC
41 ax-resscn 8674 . . . . . . . . . . . . . . 15  |-  RR  C_  CC
42 3nn 9757 . . . . . . . . . . . . . . . . . 18  |-  3  e.  NN
43 dvexp 19134 . . . . . . . . . . . . . . . . . 18  |-  ( 3  e.  NN  ->  ( CC  _D  ( y  e.  CC  |->  ( y ^
3 ) ) )  =  ( y  e.  CC  |->  ( 3  x.  ( y ^ (
3  -  1 ) ) ) ) )
4442, 43ax-mp 10 . . . . . . . . . . . . . . . . 17  |-  ( CC 
_D  ( y  e.  CC  |->  ( y ^
3 ) ) )  =  ( y  e.  CC  |->  ( 3  x.  ( y ^ (
3  -  1 ) ) ) )
45 ax-1cn 8675 . . . . . . . . . . . . . . . . . . . . 21  |-  1  e.  CC
46 2cn 9696 . . . . . . . . . . . . . . . . . . . . 21  |-  2  e.  CC
47 2p1e3 9726 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( 2  +  1 )  =  3
4846, 45, 47addcomli 8884 . . . . . . . . . . . . . . . . . . . . 21  |-  ( 1  +  2 )  =  3
4916, 45, 46, 48subaddrii 9015 . . . . . . . . . . . . . . . . . . . 20  |-  ( 3  -  1 )  =  2
5049oveq2i 5721 . . . . . . . . . . . . . . . . . . 19  |-  ( y ^ ( 3  -  1 ) )  =  ( y ^ 2 )
5150oveq2i 5721 . . . . . . . . . . . . . . . . . 18  |-  ( 3  x.  ( y ^
( 3  -  1 ) ) )  =  ( 3  x.  (
y ^ 2 ) )
5251mpteq2i 4000 . . . . . . . . . . . . . . . . 17  |-  ( y  e.  CC  |->  ( 3  x.  ( y ^
( 3  -  1 ) ) ) )  =  ( y  e.  CC  |->  ( 3  x.  ( y ^ 2 ) ) )
5344, 52eqtri 2273 . . . . . . . . . . . . . . . 16  |-  ( CC 
_D  ( y  e.  CC  |->  ( y ^
3 ) ) )  =  ( y  e.  CC  |->  ( 3  x.  ( y ^ 2 ) ) )
5436, 53dmmpti 5230 . . . . . . . . . . . . . . 15  |-  dom  ( CC  _D  ( y  e.  CC  |->  ( y ^
3 ) ) )  =  CC
5541, 54sseqtr4i 3132 . . . . . . . . . . . . . 14  |-  RR  C_  dom  ( CC  _D  (
y  e.  CC  |->  ( y ^ 3 ) ) )
56 dvres3 19095 . . . . . . . . . . . . . 14  |-  ( ( ( RR  e.  { RR ,  CC }  /\  ( y  e.  CC  |->  ( y ^ 3 ) ) : CC --> CC )  /\  ( CC  C_  CC  /\  RR  C_ 
dom  ( CC  _D  ( y  e.  CC  |->  ( y ^ 3 ) ) ) ) )  ->  ( RR  _D  ( ( y  e.  CC  |->  ( y ^
3 ) )  |`  RR ) )  =  ( ( CC  _D  (
y  e.  CC  |->  ( y ^ 3 ) ) )  |`  RR ) )
579, 39, 40, 55, 56mp4an 657 . . . . . . . . . . . . 13  |-  ( RR 
_D  ( ( y  e.  CC  |->  ( y ^ 3 ) )  |`  RR ) )  =  ( ( CC  _D  ( y  e.  CC  |->  ( y ^ 3 ) ) )  |`  RR )
58 resmpt 4907 . . . . . . . . . . . . . . 15  |-  ( RR  C_  CC  ->  ( (
y  e.  CC  |->  ( y ^ 3 ) )  |`  RR )  =  ( y  e.  RR  |->  ( y ^
3 ) ) )
5941, 58ax-mp 10 . . . . . . . . . . . . . 14  |-  ( ( y  e.  CC  |->  ( y ^ 3 ) )  |`  RR )  =  ( y  e.  RR  |->  ( y ^
3 ) )
6059oveq2i 5721 . . . . . . . . . . . . 13  |-  ( RR 
_D  ( ( y  e.  CC  |->  ( y ^ 3 ) )  |`  RR ) )  =  ( RR  _D  (
y  e.  RR  |->  ( y ^ 3 ) ) )
6153reseq1i 4858 . . . . . . . . . . . . . 14  |-  ( ( CC  _D  ( y  e.  CC  |->  ( y ^ 3 ) ) )  |`  RR )  =  ( ( y  e.  CC  |->  ( 3  x.  ( y ^
2 ) ) )  |`  RR )
62 resmpt 4907 . . . . . . . . . . . . . . 15  |-  ( RR  C_  CC  ->  ( (
y  e.  CC  |->  ( 3  x.  ( y ^ 2 ) ) )  |`  RR )  =  ( y  e.  RR  |->  ( 3  x.  ( y ^ 2 ) ) ) )
6341, 62ax-mp 10 . . . . . . . . . . . . . 14  |-  ( ( y  e.  CC  |->  ( 3  x.  ( y ^ 2 ) ) )  |`  RR )  =  ( y  e.  RR  |->  ( 3  x.  ( y ^ 2 ) ) )
6461, 63eqtri 2273 . . . . . . . . . . . . 13  |-  ( ( CC  _D  ( y  e.  CC  |->  ( y ^ 3 ) ) )  |`  RR )  =  ( y  e.  RR  |->  ( 3  x.  ( y ^ 2 ) ) )
6557, 60, 643eqtr3i 2281 . . . . . . . . . . . 12  |-  ( RR 
_D  ( y  e.  RR  |->  ( y ^
3 ) ) )  =  ( y  e.  RR  |->  ( 3  x.  ( y ^ 2 ) ) )
6665a1i 12 . . . . . . . . . . 11  |-  (  T. 
->  ( RR  _D  (
y  e.  RR  |->  ( y ^ 3 ) ) )  =  ( y  e.  RR  |->  ( 3  x.  ( y ^ 2 ) ) ) )
6745, 16, 17divcli 9382 . . . . . . . . . . . 12  |-  ( 1  /  3 )  e.  CC
6867a1i 12 . . . . . . . . . . 11  |-  (  T. 
->  ( 1  /  3
)  e.  CC )
6910, 35, 37, 66, 68dvmptcmul 19145 . . . . . . . . . 10  |-  (  T. 
->  ( RR  _D  (
y  e.  RR  |->  ( ( 1  /  3
)  x.  ( y ^ 3 ) ) ) )  =  ( y  e.  RR  |->  ( ( 1  /  3
)  x.  ( 3  x.  ( y ^
2 ) ) ) ) )
7069trud 1320 . . . . . . . . 9  |-  ( RR 
_D  ( y  e.  RR  |->  ( ( 1  /  3 )  x.  ( y ^ 3 ) ) ) )  =  ( y  e.  RR  |->  ( ( 1  /  3 )  x.  ( 3  x.  (
y ^ 2 ) ) ) )
71 sqcl 11044 . . . . . . . . . . . . 13  |-  ( y  e.  CC  ->  (
y ^ 2 )  e.  CC )
72 mulcl 8701 . . . . . . . . . . . . 13  |-  ( ( 3  e.  CC  /\  ( y ^ 2 )  e.  CC )  ->  ( 3  x.  ( y ^ 2 ) )  e.  CC )
7316, 71, 72sylancr 647 . . . . . . . . . . . 12  |-  ( y  e.  CC  ->  (
3  x.  ( y ^ 2 ) )  e.  CC )
74 divrec2 9321 . . . . . . . . . . . . 13  |-  ( ( ( 3  x.  (
y ^ 2 ) )  e.  CC  /\  3  e.  CC  /\  3  =/=  0 )  ->  (
( 3  x.  (
y ^ 2 ) )  /  3 )  =  ( ( 1  /  3 )  x.  ( 3  x.  (
y ^ 2 ) ) ) )
7516, 17, 74mp3an23 1274 . . . . . . . . . . . 12  |-  ( ( 3  x.  ( y ^ 2 ) )  e.  CC  ->  (
( 3  x.  (
y ^ 2 ) )  /  3 )  =  ( ( 1  /  3 )  x.  ( 3  x.  (
y ^ 2 ) ) ) )
7611, 73, 753syl 20 . . . . . . . . . . 11  |-  ( y  e.  RR  ->  (
( 3  x.  (
y ^ 2 ) )  /  3 )  =  ( ( 1  /  3 )  x.  ( 3  x.  (
y ^ 2 ) ) ) )
77 divcan3 9328 . . . . . . . . . . . . 13  |-  ( ( ( y ^ 2 )  e.  CC  /\  3  e.  CC  /\  3  =/=  0 )  ->  (
( 3  x.  (
y ^ 2 ) )  /  3 )  =  ( y ^
2 ) )
7816, 17, 77mp3an23 1274 . . . . . . . . . . . 12  |-  ( ( y ^ 2 )  e.  CC  ->  (
( 3  x.  (
y ^ 2 ) )  /  3 )  =  ( y ^
2 ) )
7911, 71, 783syl 20 . . . . . . . . . . 11  |-  ( y  e.  RR  ->  (
( 3  x.  (
y ^ 2 ) )  /  3 )  =  ( y ^
2 ) )
8076, 79eqtr3d 2287 . . . . . . . . . 10  |-  ( y  e.  RR  ->  (
( 1  /  3
)  x.  ( 3  x.  ( y ^
2 ) ) )  =  ( y ^
2 ) )
8180mpteq2ia 3999 . . . . . . . . 9  |-  ( y  e.  RR  |->  ( ( 1  /  3 )  x.  ( 3  x.  ( y ^ 2 ) ) ) )  =  ( y  e.  RR  |->  ( y ^
2 ) )
8234, 70, 813eqtri 2277 . . . . . . . 8  |-  ( RR 
_D  ( y  e.  RR  |->  ( ( y ^ 3 )  / 
3 ) ) )  =  ( y  e.  RR  |->  ( y ^
2 ) )
8382a1i 12 . . . . . . 7  |-  (  T. 
->  ( RR  _D  (
y  e.  RR  |->  ( ( y ^ 3 )  /  3 ) ) )  =  ( y  e.  RR  |->  ( y ^ 2 ) ) )
8422adantl 454 . . . . . . 7  |-  ( (  T.  /\  y  e.  RR )  ->  (
3  x.  y )  e.  CC )
8516elexi 2736 . . . . . . . 8  |-  3  e.  _V
8685a1i 12 . . . . . . 7  |-  ( (  T.  /\  y  e.  RR )  ->  3  e.  _V )
8711adantl 454 . . . . . . . . 9  |-  ( (  T.  /\  y  e.  RR )  ->  y  e.  CC )
881a1i 12 . . . . . . . . 9  |-  ( (  T.  /\  y  e.  RR )  ->  1  e.  RR )
8910dvmptid 19138 . . . . . . . . 9  |-  (  T. 
->  ( RR  _D  (
y  e.  RR  |->  y ) )  =  ( y  e.  RR  |->  1 ) )
9016a1i 12 . . . . . . . . 9  |-  (  T. 
->  3  e.  CC )
9110, 87, 88, 89, 90dvmptcmul 19145 . . . . . . . 8  |-  (  T. 
->  ( RR  _D  (
y  e.  RR  |->  ( 3  x.  y ) ) )  =  ( y  e.  RR  |->  ( 3  x.  1 ) ) )
9216mulid1i 8719 . . . . . . . . 9  |-  ( 3  x.  1 )  =  3
9392mpteq2i 4000 . . . . . . . 8  |-  ( y  e.  RR  |->  ( 3  x.  1 ) )  =  ( y  e.  RR  |->  3 )
9491, 93syl6eq 2301 . . . . . . 7  |-  (  T. 
->  ( RR  _D  (
y  e.  RR  |->  ( 3  x.  y ) ) )  =  ( y  e.  RR  |->  3 ) )
9510, 27, 29, 83, 84, 86, 94dvmptsub 19148 . . . . . 6  |-  (  T. 
->  ( RR  _D  (
y  e.  RR  |->  ( ( ( y ^
3 )  /  3
)  -  ( 3  x.  y ) ) ) )  =  ( y  e.  RR  |->  ( ( y ^ 2 )  -  3 ) ) )
96 iccssre 10609 . . . . . . . 8  |-  ( ( 1  e.  RR  /\  2  e.  RR )  ->  ( 1 [,] 2
)  C_  RR )
971, 3, 96mp2an 656 . . . . . . 7  |-  ( 1 [,] 2 )  C_  RR
9897a1i 12 . . . . . 6  |-  (  T. 
->  ( 1 [,] 2
)  C_  RR )
99 eqid 2253 . . . . . . 7  |-  ( TopOpen ` fld )  =  ( TopOpen ` fld )
10099tgioo2 18141 . . . . . 6  |-  ( topGen ` 
ran  (,) )  =  ( ( TopOpen ` fld )t  RR )
101 iccntr 18158 . . . . . . . 8  |-  ( ( 1  e.  RR  /\  2  e.  RR )  ->  ( ( int `  ( topGen `
 ran  (,) )
) `  ( 1 [,] 2 ) )  =  ( 1 (,) 2
) )
1021, 3, 101mp2an 656 . . . . . . 7  |-  ( ( int `  ( topGen ` 
ran  (,) ) ) `  ( 1 [,] 2
) )  =  ( 1 (,) 2 )
103102a1i 12 . . . . . 6  |-  (  T. 
->  ( ( int `  ( topGen `
 ran  (,) )
) `  ( 1 [,] 2 ) )  =  ( 1 (,) 2
) )
10410, 24, 26, 95, 98, 100, 99, 103dvmptres2 19143 . . . . 5  |-  (  T. 
->  ( RR  _D  (
y  e.  ( 1 [,] 2 )  |->  ( ( ( y ^
3 )  /  3
)  -  ( 3  x.  y ) ) ) )  =  ( y  e.  ( 1 (,) 2 )  |->  ( ( y ^ 2 )  -  3 ) ) )
105 ioossicc 10613 . . . . . . 7  |-  ( 1 (,) 2 )  C_  ( 1 [,] 2
)
106 resmpt 4907 . . . . . . 7  |-  ( ( 1 (,) 2 ) 
C_  ( 1 [,] 2 )  ->  (
( y  e.  ( 1 [,] 2 ) 
|->  ( ( y ^
2 )  -  3 ) )  |`  (
1 (,) 2 ) )  =  ( y  e.  ( 1 (,) 2 )  |->  ( ( y ^ 2 )  -  3 ) ) )
107105, 106ax-mp 10 . . . . . 6  |-  ( ( y  e.  ( 1 [,] 2 )  |->  ( ( y ^ 2 )  -  3 ) )  |`  ( 1 (,) 2 ) )  =  ( y  e.  ( 1 (,) 2
)  |->  ( ( y ^ 2 )  - 
3 ) )
10897, 41sstri 3109 . . . . . . . . 9  |-  ( 1 [,] 2 )  C_  CC
109 resmpt 4907 . . . . . . . . 9  |-  ( ( 1 [,] 2 ) 
C_  CC  ->  ( ( y  e.  CC  |->  ( ( y ^ 2 )  -  3 ) )  |`  ( 1 [,] 2 ) )  =  ( y  e.  ( 1 [,] 2
)  |->  ( ( y ^ 2 )  - 
3 ) ) )
110108, 109ax-mp 10 . . . . . . . 8  |-  ( ( y  e.  CC  |->  ( ( y ^ 2 )  -  3 ) )  |`  ( 1 [,] 2 ) )  =  ( y  e.  ( 1 [,] 2
)  |->  ( ( y ^ 2 )  - 
3 ) )
111 eqid 2253 . . . . . . . . . . . 12  |-  ( y  e.  CC  |->  ( ( y ^ 2 )  -  3 ) )  =  ( y  e.  CC  |->  ( ( y ^ 2 )  - 
3 ) )
112 subcl 8931 . . . . . . . . . . . . . 14  |-  ( ( ( y ^ 2 )  e.  CC  /\  3  e.  CC )  ->  ( ( y ^
2 )  -  3 )  e.  CC )
11316, 112mpan2 655 . . . . . . . . . . . . 13  |-  ( ( y ^ 2 )  e.  CC  ->  (
( y ^ 2 )  -  3 )  e.  CC )
11471, 113syl 17 . . . . . . . . . . . 12  |-  ( y  e.  CC  ->  (
( y ^ 2 )  -  3 )  e.  CC )
115111, 114fmpti 5535 . . . . . . . . . . 11  |-  ( y  e.  CC  |->  ( ( y ^ 2 )  -  3 ) ) : CC --> CC
11640, 115, 403pm3.2i 1135 . . . . . . . . . 10  |-  ( CC  C_  CC  /\  ( y  e.  CC  |->  ( ( y ^ 2 )  -  3 ) ) : CC --> CC  /\  CC  C_  CC )
117 ovex 5735 . . . . . . . . . . 11  |-  ( ( 2  x.  ( y ^ ( 2  -  1 ) ) )  -  0 )  e. 
_V
118 cnex 8698 . . . . . . . . . . . . . . 15  |-  CC  e.  _V
119118prid2 3639 . . . . . . . . . . . . . 14  |-  CC  e.  { RR ,  CC }
120119a1i 12 . . . . . . . . . . . . 13  |-  (  T. 
->  CC  e.  { RR ,  CC } )
12171adantl 454 . . . . . . . . . . . . 13  |-  ( (  T.  /\  y  e.  CC )  ->  (
y ^ 2 )  e.  CC )
122 ovex 5735 . . . . . . . . . . . . . 14  |-  ( 2  x.  ( y ^
( 2  -  1 ) ) )  e. 
_V
123122a1i 12 . . . . . . . . . . . . 13  |-  ( (  T.  /\  y  e.  CC )  ->  (
2  x.  ( y ^ ( 2  -  1 ) ) )  e.  _V )
124 2nn 9756 . . . . . . . . . . . . . . 15  |-  2  e.  NN
125 dvexp 19134 . . . . . . . . . . . . . . 15  |-  ( 2  e.  NN  ->  ( CC  _D  ( y  e.  CC  |->  ( y ^
2 ) ) )  =  ( y  e.  CC  |->  ( 2  x.  ( y ^ (
2  -  1 ) ) ) ) )
126124, 125ax-mp 10 . . . . . . . . . . . . . 14  |-  ( CC 
_D  ( y  e.  CC  |->  ( y ^
2 ) ) )  =  ( y  e.  CC  |->  ( 2  x.  ( y ^ (
2  -  1 ) ) ) )
127126a1i 12 . . . . . . . . . . . . 13  |-  (  T. 
->  ( CC  _D  (
y  e.  CC  |->  ( y ^ 2 ) ) )  =  ( y  e.  CC  |->  ( 2  x.  ( y ^ ( 2  -  1 ) ) ) ) )
12816a1i 12 . . . . . . . . . . . . 13  |-  ( (  T.  /\  y  e.  CC )  ->  3  e.  CC )
129 c0ex 8712 . . . . . . . . . . . . . 14  |-  0  e.  _V
130129a1i 12 . . . . . . . . . . . . 13  |-  ( (  T.  /\  y  e.  CC )  ->  0  e.  _V )
131120, 90dvmptc 19139 . . . . . . . . . . . . 13  |-  (  T. 
->  ( CC  _D  (
y  e.  CC  |->  3 ) )  =  ( y  e.  CC  |->  0 ) )
132120, 121, 123, 127, 128, 130, 131dvmptsub 19148 . . . . . . . . . . . 12  |-  (  T. 
->  ( CC  _D  (
y  e.  CC  |->  ( ( y ^ 2 )  -  3 ) ) )  =  ( y  e.  CC  |->  ( ( 2  x.  (
y ^ ( 2  -  1 ) ) )  -  0 ) ) )
133132trud 1320 . . . . . . . . . . 11  |-  ( CC 
_D  ( y  e.  CC  |->  ( ( y ^ 2 )  - 
3 ) ) )  =  ( y  e.  CC  |->  ( ( 2  x.  ( y ^
( 2  -  1 ) ) )  - 
0 ) )
134117, 133dmmpti 5230 . . . . . . . . . 10  |-  dom  ( CC  _D  ( y  e.  CC  |->  ( ( y ^ 2 )  - 
3 ) ) )  =  CC
135 dvcn 19102 . . . . . . . . . 10  |-  ( ( ( CC  C_  CC  /\  ( y  e.  CC  |->  ( ( y ^
2 )  -  3 ) ) : CC --> CC  /\  CC  C_  CC )  /\  dom  ( CC 
_D  ( y  e.  CC  |->  ( ( y ^ 2 )  - 
3 ) ) )  =  CC )  -> 
( y  e.  CC  |->  ( ( y ^
2 )  -  3 ) )  e.  ( CC -cn-> CC ) )
136116, 134, 135mp2an 656 . . . . . . . . 9  |-  ( y  e.  CC  |->  ( ( y ^ 2 )  -  3 ) )  e.  ( CC -cn-> CC )
137 rescncf 18233 . . . . . . . . 9  |-  ( ( 1 [,] 2 ) 
C_  CC  ->  ( ( y  e.  CC  |->  ( ( y ^ 2 )  -  3 ) )  e.  ( CC
-cn-> CC )  ->  (
( y  e.  CC  |->  ( ( y ^
2 )  -  3 ) )  |`  (
1 [,] 2 ) )  e.  ( ( 1 [,] 2 )
-cn-> CC ) ) )
138108, 136, 137mp2 19 . . . . . . . 8  |-  ( ( y  e.  CC  |->  ( ( y ^ 2 )  -  3 ) )  |`  ( 1 [,] 2 ) )  e.  ( ( 1 [,] 2 ) -cn-> CC )
139110, 138eqeltrri 2324 . . . . . . 7  |-  ( y  e.  ( 1 [,] 2 )  |->  ( ( y ^ 2 )  -  3 ) )  e.  ( ( 1 [,] 2 ) -cn-> CC )
140 rescncf 18233 . . . . . . 7  |-  ( ( 1 (,) 2 ) 
C_  ( 1 [,] 2 )  ->  (
( y  e.  ( 1 [,] 2 ) 
|->  ( ( y ^
2 )  -  3 ) )  e.  ( ( 1 [,] 2
) -cn-> CC )  ->  (
( y  e.  ( 1 [,] 2 ) 
|->  ( ( y ^
2 )  -  3 ) )  |`  (
1 (,) 2 ) )  e.  ( ( 1 (,) 2 )
-cn-> CC ) ) )
141105, 139, 140mp2 19 . . . . . 6  |-  ( ( y  e.  ( 1 [,] 2 )  |->  ( ( y ^ 2 )  -  3 ) )  |`  ( 1 (,) 2 ) )  e.  ( ( 1 (,) 2 ) -cn-> CC )
142107, 141eqeltrri 2324 . . . . 5  |-  ( y  e.  ( 1 (,) 2 )  |->  ( ( y ^ 2 )  -  3 ) )  e.  ( ( 1 (,) 2 ) -cn-> CC )
143104, 142syl6eqel 2341 . . . 4  |-  (  T. 
->  ( RR  _D  (
y  e.  ( 1 [,] 2 )  |->  ( ( ( y ^
3 )  /  3
)  -  ( 3  x.  y ) ) ) )  e.  ( ( 1 (,) 2
) -cn-> CC ) )
144105a1i 12 . . . . . 6  |-  (  T. 
->  ( 1 (,) 2
)  C_  ( 1 [,] 2 ) )
145 ioombl 18754 . . . . . . 7  |-  ( 1 (,) 2 )  e. 
dom  vol
146145a1i 12 . . . . . 6  |-  (  T. 
->  ( 1 (,) 2
)  e.  dom  vol )
14725a1i 12 . . . . . 6  |-  ( (  T.  /\  y  e.  ( 1 [,] 2
) )  ->  (
( y ^ 2 )  -  3 )  e.  _V )
148 cniccibl 19027 . . . . . . . 8  |-  ( ( 1  e.  RR  /\  2  e.  RR  /\  (
y  e.  ( 1 [,] 2 )  |->  ( ( y ^ 2 )  -  3 ) )  e.  ( ( 1 [,] 2 )
-cn-> CC ) )  -> 
( y  e.  ( 1 [,] 2 ) 
|->  ( ( y ^
2 )  -  3 ) )  e.  L ^1 )
1491, 3, 139, 148mp3an 1282 . . . . . . 7  |-  ( y  e.  ( 1 [,] 2 )  |->  ( ( y ^ 2 )  -  3 ) )  e.  L ^1
150149a1i 12 . . . . . 6  |-  (  T. 
->  ( y  e.  ( 1 [,] 2 ) 
|->  ( ( y ^
2 )  -  3 ) )  e.  L ^1 )
151144, 146, 147, 150iblss 18991 . . . . 5  |-  (  T. 
->  ( y  e.  ( 1 (,) 2 ) 
|->  ( ( y ^
2 )  -  3 ) )  e.  L ^1 )
152104, 151eqeltrd 2327 . . . 4  |-  (  T. 
->  ( RR  _D  (
y  e.  ( 1 [,] 2 )  |->  ( ( ( y ^
3 )  /  3
)  -  ( 3  x.  y ) ) ) )  e.  L ^1 )
153 resmpt 4907 . . . . . . 7  |-  ( ( 1 [,] 2 ) 
C_  RR  ->  ( ( y  e.  RR  |->  ( ( ( y ^
3 )  /  3
)  -  ( 3  x.  y ) ) )  |`  ( 1 [,] 2 ) )  =  ( y  e.  ( 1 [,] 2
)  |->  ( ( ( y ^ 3 )  /  3 )  -  ( 3  x.  y
) ) ) )
15497, 153ax-mp 10 . . . . . 6  |-  ( ( y  e.  RR  |->  ( ( ( y ^
3 )  /  3
)  -  ( 3  x.  y ) ) )  |`  ( 1 [,] 2 ) )  =  ( y  e.  ( 1 [,] 2
)  |->  ( ( ( y ^ 3 )  /  3 )  -  ( 3  x.  y
) ) )
155 eqid 2253 . . . . . . . . . 10  |-  ( y  e.  RR  |->  ( ( ( y ^ 3 )  /  3 )  -  ( 3  x.  y ) ) )  =  ( y  e.  RR  |->  ( ( ( y ^ 3 )  /  3 )  -  ( 3  x.  y
) ) )
156155, 23fmpti 5535 . . . . . . . . 9  |-  ( y  e.  RR  |->  ( ( ( y ^ 3 )  /  3 )  -  ( 3  x.  y ) ) ) : RR --> CC
157 ssid 3118 . . . . . . . . 9  |-  RR  C_  RR
15841, 156, 1573pm3.2i 1135 . . . . . . . 8  |-  ( RR  C_  CC  /\  ( y  e.  RR  |->  ( ( ( y ^ 3 )  /  3 )  -  ( 3  x.  y ) ) ) : RR --> CC  /\  RR  C_  RR )
15995trud 1320 . . . . . . . . 9  |-  ( RR 
_D  ( y  e.  RR  |->  ( ( ( y ^ 3 )  /  3 )  -  ( 3  x.  y
) ) ) )  =  ( y  e.  RR  |->  ( ( y ^ 2 )  - 
3 ) )
16025, 159dmmpti 5230 . . . . . . . 8  |-  dom  ( RR  _D  ( y  e.  RR  |->  ( ( ( y ^ 3 )  /  3 )  -  ( 3  x.  y
) ) ) )  =  RR
161 dvcn 19102 . . . . . . . 8  |-  ( ( ( RR  C_  CC  /\  ( y  e.  RR  |->  ( ( ( y ^ 3 )  / 
3 )  -  (
3  x.  y ) ) ) : RR --> CC  /\  RR  C_  RR )  /\  dom  ( RR 
_D  ( y  e.  RR  |->  ( ( ( y ^ 3 )  /  3 )  -  ( 3  x.  y
) ) ) )  =  RR )  -> 
( y  e.  RR  |->  ( ( ( y ^ 3 )  / 
3 )  -  (
3  x.  y ) ) )  e.  ( RR -cn-> CC ) )
162158, 160, 161mp2an 656 . . . . . . 7  |-  ( y  e.  RR  |->  ( ( ( y ^ 3 )  /  3 )  -  ( 3  x.  y ) ) )  e.  ( RR -cn-> CC )
163 rescncf 18233 . . . . . . 7  |-  ( ( 1 [,] 2 ) 
C_  RR  ->  ( ( y  e.  RR  |->  ( ( ( y ^
3 )  /  3
)  -  ( 3  x.  y ) ) )  e.  ( RR
-cn-> CC )  ->  (
( y  e.  RR  |->  ( ( ( y ^ 3 )  / 
3 )  -  (
3  x.  y ) ) )  |`  (
1 [,] 2 ) )  e.  ( ( 1 [,] 2 )
-cn-> CC ) ) )
16497, 162, 163mp2 19 . . . . . 6  |-  ( ( y  e.  RR  |->  ( ( ( y ^
3 )  /  3
)  -  ( 3  x.  y ) ) )  |`  ( 1 [,] 2 ) )  e.  ( ( 1 [,] 2 ) -cn-> CC )
165154, 164eqeltrri 2324 . . . . 5  |-  ( y  e.  ( 1 [,] 2 )  |->  ( ( ( y ^ 3 )  /  3 )  -  ( 3  x.  y ) ) )  e.  ( ( 1 [,] 2 ) -cn-> CC )
166165a1i 12 . . . 4  |-  (  T. 
->  ( y  e.  ( 1 [,] 2 ) 
|->  ( ( ( y ^ 3 )  / 
3 )  -  (
3  x.  y ) ) )  e.  ( ( 1 [,] 2
) -cn-> CC ) )
1672, 4, 7, 143, 152, 166ftc2 19223 . . 3  |-  (  T. 
->  S. ( 1 (,) 2 ) ( ( RR  _D  ( y  e.  ( 1 [,] 2 )  |->  ( ( ( y ^ 3 )  /  3 )  -  ( 3  x.  y ) ) ) ) `  x )  _d x  =  ( ( ( y  e.  ( 1 [,] 2
)  |->  ( ( ( y ^ 3 )  /  3 )  -  ( 3  x.  y
) ) ) ` 
2 )  -  (
( y  e.  ( 1 [,] 2 ) 
|->  ( ( ( y ^ 3 )  / 
3 )  -  (
3  x.  y ) ) ) `  1
) ) )
168167trud 1320 . 2  |-  S. ( 1 (,) 2 ) ( ( RR  _D  ( y  e.  ( 1 [,] 2 ) 
|->  ( ( ( y ^ 3 )  / 
3 )  -  (
3  x.  y ) ) ) ) `  x )  _d x  =  ( ( ( y  e.  ( 1 [,] 2 )  |->  ( ( ( y ^
3 )  /  3
)  -  ( 3  x.  y ) ) ) `  2 )  -  ( ( y  e.  ( 1 [,] 2 )  |->  ( ( ( y ^ 3 )  /  3 )  -  ( 3  x.  y ) ) ) `
 1 ) )
169 itgeq2 18964 . . 3  |-  ( A. x  e.  ( 1 (,) 2 ) ( ( RR  _D  (
y  e.  ( 1 [,] 2 )  |->  ( ( ( y ^
3 )  /  3
)  -  ( 3  x.  y ) ) ) ) `  x
)  =  ( ( x ^ 2 )  -  3 )  ->  S. ( 1 (,) 2
) ( ( RR 
_D  ( y  e.  ( 1 [,] 2
)  |->  ( ( ( y ^ 3 )  /  3 )  -  ( 3  x.  y
) ) ) ) `
 x )  _d x  =  S. ( 1 (,) 2 ) ( ( x ^
2 )  -  3 )  _d x )
170 oveq1 5717 . . . . 5  |-  ( y  =  x  ->  (
y ^ 2 )  =  ( x ^
2 ) )
171170oveq1d 5725 . . . 4  |-  ( y  =  x  ->  (
( y ^ 2 )  -  3 )  =  ( ( x ^ 2 )  - 
3 ) )
172104trud 1320 . . . 4  |-  ( RR 
_D  ( y  e.  ( 1 [,] 2
)  |->  ( ( ( y ^ 3 )  /  3 )  -  ( 3  x.  y
) ) ) )  =  ( y  e.  ( 1 (,) 2
)  |->  ( ( y ^ 2 )  - 
3 ) )
173 ovex 5735 . . . 4  |-  ( ( x ^ 2 )  -  3 )  e. 
_V
174171, 172, 173fvmpt 5454 . . 3  |-  ( x  e.  ( 1 (,) 2 )  ->  (
( RR  _D  (
y  e.  ( 1 [,] 2 )  |->  ( ( ( y ^
3 )  /  3
)  -  ( 3  x.  y ) ) ) ) `  x
)  =  ( ( x ^ 2 )  -  3 ) )
175169, 174mprg 2574 . 2  |-  S. ( 1 (,) 2 ) ( ( RR  _D  ( y  e.  ( 1 [,] 2 ) 
|->  ( ( ( y ^ 3 )  / 
3 )  -  (
3  x.  y ) ) ) ) `  x )  _d x  =  S. ( 1 (,) 2 ) ( ( x ^ 2 )  -  3 )  _d x
1763leidi 9187 . . . . . . . . 9  |-  2  <_  2
1771, 3elicc2i 10594 . . . . . . . . 9  |-  ( 2  e.  ( 1 [,] 2 )  <->  ( 2  e.  RR  /\  1  <_  2  /\  2  <_ 
2 ) )
1783, 6, 176, 177mpbir3an 1139 . . . . . . . 8  |-  2  e.  ( 1 [,] 2
)
179 oveq1 5717 . . . . . . . . . . . 12  |-  ( y  =  2  ->  (
y ^ 3 )  =  ( 2 ^ 3 ) )
180179oveq1d 5725 . . . . . . . . . . 11  |-  ( y  =  2  ->  (
( y ^ 3 )  /  3 )  =  ( ( 2 ^ 3 )  / 
3 ) )
181 oveq2 5718 . . . . . . . . . . 11  |-  ( y  =  2  ->  (
3  x.  y )  =  ( 3  x.  2 ) )
182180, 181oveq12d 5728 . . . . . . . . . 10  |-  ( y  =  2  ->  (
( ( y ^
3 )  /  3
)  -  ( 3  x.  y ) )  =  ( ( ( 2 ^ 3 )  /  3 )  -  ( 3  x.  2 ) ) )
183 cu2 11079 . . . . . . . . . . . . 13  |-  ( 2 ^ 3 )  =  8
184183oveq1i 5720 . . . . . . . . . . . 12  |-  ( ( 2 ^ 3 )  /  3 )  =  ( 8  /  3
)
185 3t2e6 9751 . . . . . . . . . . . 12  |-  ( 3  x.  2 )  =  6
186184, 185oveq12i 5722 . . . . . . . . . . 11  |-  ( ( ( 2 ^ 3 )  /  3 )  -  ( 3  x.  2 ) )  =  ( ( 8  / 
3 )  -  6 )
187 6nn 9760 . . . . . . . . . . . . . . . 16  |-  6  e.  NN
188187nncni 9636 . . . . . . . . . . . . . . 15  |-  6  e.  CC
18946, 188, 16, 17divdiri 9397 . . . . . . . . . . . . . 14  |-  ( ( 2  +  6 )  /  3 )  =  ( ( 2  / 
3 )  +  ( 6  /  3 ) )
190 6p2e8 9743 . . . . . . . . . . . . . . . 16  |-  ( 6  +  2 )  =  8
191188, 46, 190addcomli 8884 . . . . . . . . . . . . . . 15  |-  ( 2  +  6 )  =  8
192191oveq1i 5720 . . . . . . . . . . . . . 14  |-  ( ( 2  +  6 )  /  3 )  =  ( 8  /  3
)
193188, 16, 46, 17divmuli 9394 . . . . . . . . . . . . . . . 16  |-  ( ( 6  /  3 )  =  2  <->  ( 3  x.  2 )  =  6 )
194185, 193mpbir 202 . . . . . . . . . . . . . . 15  |-  ( 6  /  3 )  =  2
195194oveq2i 5721 . . . . . . . . . . . . . 14  |-  ( ( 2  /  3 )  +  ( 6  / 
3 ) )  =  ( ( 2  / 
3 )  +  2 )
196189, 192, 1953eqtr3i 2281 . . . . . . . . . . . . 13  |-  ( 8  /  3 )  =  ( ( 2  / 
3 )  +  2 )
197196oveq1i 5720 . . . . . . . . . . . 12  |-  ( ( 8  /  3 )  -  6 )  =  ( ( ( 2  /  3 )  +  2 )  -  6 )
19846, 16, 17divcli 9382 . . . . . . . . . . . . 13  |-  ( 2  /  3 )  e.  CC
199 subsub3 8959 . . . . . . . . . . . . 13  |-  ( ( ( 2  /  3
)  e.  CC  /\  6  e.  CC  /\  2  e.  CC )  ->  (
( 2  /  3
)  -  ( 6  -  2 ) )  =  ( ( ( 2  /  3 )  +  2 )  - 
6 ) )
200198, 188, 46, 199mp3an 1282 . . . . . . . . . . . 12  |-  ( ( 2  /  3 )  -  ( 6  -  2 ) )  =  ( ( ( 2  /  3 )  +  2 )  -  6 )
201197, 200eqtr4i 2276 . . . . . . . . . . 11  |-  ( ( 8  /  3 )  -  6 )  =  ( ( 2  / 
3 )  -  (
6  -  2 ) )
202 4cn 9700 . . . . . . . . . . . . 13  |-  4  e.  CC
203 4p2e6 9736 . . . . . . . . . . . . . 14  |-  ( 4  +  2 )  =  6
204202, 46, 203addcomli 8884 . . . . . . . . . . . . 13  |-  ( 2  +  4 )  =  6
205188, 46, 202, 204subaddrii 9015 . . . . . . . . . . . 12  |-  ( 6  -  2 )  =  4
206205oveq2i 5721 . . . . . . . . . . 11  |-  ( ( 2  /  3 )  -  ( 6  -  2 ) )  =  ( ( 2  / 
3 )  -  4 )
207186, 201, 2063eqtri 2277 . . . . . . . . . 10  |-  ( ( ( 2 ^ 3 )  /  3 )  -  ( 3  x.  2 ) )  =  ( ( 2  / 
3 )  -  4 )
208182, 207syl6eq 2301 . . . . . . . . 9  |-  ( y  =  2  ->  (
( ( y ^
3 )  /  3
)  -  ( 3  x.  y ) )  =  ( ( 2  /  3 )  - 
4 ) )
209 eqid 2253 . . . . . . . . 9  |-  ( y  e.  ( 1 [,] 2 )  |->  ( ( ( y ^ 3 )  /  3 )  -  ( 3  x.  y ) ) )  =  ( y  e.  ( 1 [,] 2
)  |->  ( ( ( y ^ 3 )  /  3 )  -  ( 3  x.  y
) ) )
210 ovex 5735 . . . . . . . . 9  |-  ( ( 2  /  3 )  -  4 )  e. 
_V
211208, 209, 210fvmpt 5454 . . . . . . . 8  |-  ( 2  e.  ( 1 [,] 2 )  ->  (
( y  e.  ( 1 [,] 2 ) 
|->  ( ( ( y ^ 3 )  / 
3 )  -  (
3  x.  y ) ) ) `  2
)  =  ( ( 2  /  3 )  -  4 ) )
212178, 211ax-mp 10 . . . . . . 7  |-  ( ( y  e.  ( 1 [,] 2 )  |->  ( ( ( y ^
3 )  /  3
)  -  ( 3  x.  y ) ) ) `  2 )  =  ( ( 2  /  3 )  - 
4 )
2131leidi 9187 . . . . . . . . 9  |-  1  <_  1
2141, 3elicc2i 10594 . . . . . . . . 9  |-  ( 1  e.  ( 1 [,] 2 )  <->  ( 1  e.  RR  /\  1  <_  1  /\  1  <_ 
2 ) )
2151, 213, 6, 214mpbir3an 1139 . . . . . . . 8  |-  1  e.  ( 1 [,] 2
)
216 oveq1 5717 . . . . . . . . . . . 12  |-  ( y  =  1  ->  (
y ^ 3 )  =  ( 1 ^ 3 ) )
217216oveq1d 5725 . . . . . . . . . . 11  |-  ( y  =  1  ->  (
( y ^ 3 )  /  3 )  =  ( ( 1 ^ 3 )  / 
3 ) )
218 oveq2 5718 . . . . . . . . . . 11  |-  ( y  =  1  ->  (
3  x.  y )  =  ( 3  x.  1 ) )
219217, 218oveq12d 5728 . . . . . . . . . 10  |-  ( y  =  1  ->  (
( ( y ^
3 )  /  3
)  -  ( 3  x.  y ) )  =  ( ( ( 1 ^ 3 )  /  3 )  -  ( 3  x.  1 ) ) )
22042nnzi 9926 . . . . . . . . . . . . 13  |-  3  e.  ZZ
221 1exp 11009 . . . . . . . . . . . . 13  |-  ( 3  e.  ZZ  ->  (
1 ^ 3 )  =  1 )
222220, 221ax-mp 10 . . . . . . . . . . . 12  |-  ( 1 ^ 3 )  =  1
223222oveq1i 5720 . . . . . . . . . . 11  |-  ( ( 1 ^ 3 )  /  3 )  =  ( 1  /  3
)
224223, 92oveq12i 5722 . . . . . . . . . 10  |-  ( ( ( 1 ^ 3 )  /  3 )  -  ( 3  x.  1 ) )  =  ( ( 1  / 
3 )  -  3 )
225219, 224syl6eq 2301 . . . . . . . . 9  |-  ( y  =  1  ->  (
( ( y ^
3 )  /  3
)  -  ( 3  x.  y ) )  =  ( ( 1  /  3 )  - 
3 ) )
226 ovex 5735 . . . . . . . . 9  |-  ( ( 1  /  3 )  -  3 )  e. 
_V
227225, 209, 226fvmpt 5454 . . . . . . . 8  |-  ( 1  e.  ( 1 [,] 2 )  ->  (
( y  e.  ( 1 [,] 2 ) 
|->  ( ( ( y ^ 3 )  / 
3 )  -  (
3  x.  y ) ) ) `  1
)  =  ( ( 1  /  3 )  -  3 ) )
228215, 227ax-mp 10 . . . . . . 7  |-  ( ( y  e.  ( 1 [,] 2 )  |->  ( ( ( y ^
3 )  /  3
)  -  ( 3  x.  y ) ) ) `  1 )  =  ( ( 1  /  3 )  - 
3 )
229212, 228oveq12i 5722 . . . . . 6  |-  ( ( ( y  e.  ( 1 [,] 2 ) 
|->  ( ( ( y ^ 3 )  / 
3 )  -  (
3  x.  y ) ) ) `  2
)  -  ( ( y  e.  ( 1 [,] 2 )  |->  ( ( ( y ^
3 )  /  3
)  -  ( 3  x.  y ) ) ) `  1 ) )  =  ( ( ( 2  /  3
)  -  4 )  -  ( ( 1  /  3 )  - 
3 ) )
230 sub4 8972 . . . . . . 7  |-  ( ( ( ( 2  / 
3 )  e.  CC  /\  4  e.  CC )  /\  ( ( 1  /  3 )  e.  CC  /\  3  e.  CC ) )  -> 
( ( ( 2  /  3 )  - 
4 )  -  (
( 1  /  3
)  -  3 ) )  =  ( ( ( 2  /  3
)  -  ( 1  /  3 ) )  -  ( 4  -  3 ) ) )
231198, 202, 67, 16, 230mp4an 657 . . . . . 6  |-  ( ( ( 2  /  3
)  -  4 )  -  ( ( 1  /  3 )  - 
3 ) )  =  ( ( ( 2  /  3 )  -  ( 1  /  3
) )  -  (
4  -  3 ) )
23216, 17pm3.2i 443 . . . . . . . . 9  |-  ( 3  e.  CC  /\  3  =/=  0 )
233 divsubdir 9336 . . . . . . . . 9  |-  ( ( 2  e.  CC  /\  1  e.  CC  /\  (
3  e.  CC  /\  3  =/=  0 ) )  ->  ( ( 2  -  1 )  / 
3 )  =  ( ( 2  /  3
)  -  ( 1  /  3 ) ) )
23446, 45, 232, 233mp3an 1282 . . . . . . . 8  |-  ( ( 2  -  1 )  /  3 )  =  ( ( 2  / 
3 )  -  (
1  /  3 ) )
235 1p1e2 9720 . . . . . . . . . 10  |-  ( 1  +  1 )  =  2
23646, 45, 45, 235subaddrii 9015 . . . . . . . . 9  |-  ( 2  -  1 )  =  1
237236oveq1i 5720 . . . . . . . 8  |-  ( ( 2  -  1 )  /  3 )  =  ( 1  /  3
)
238234, 237eqtr3i 2275 . . . . . . 7  |-  ( ( 2  /  3 )  -  ( 1  / 
3 ) )  =  ( 1  /  3
)
239 3p1e4 9727 . . . . . . . 8  |-  ( 3  +  1 )  =  4
240202, 16, 45, 239subaddrii 9015 . . . . . . 7  |-  ( 4  -  3 )  =  1
241238, 240oveq12i 5722 . . . . . 6  |-  ( ( ( 2  /  3
)  -  ( 1  /  3 ) )  -  ( 4  -  3 ) )  =  ( ( 1  / 
3 )  -  1 )
242229, 231, 2413eqtri 2277 . . . . 5  |-  ( ( ( y  e.  ( 1 [,] 2 ) 
|->  ( ( ( y ^ 3 )  / 
3 )  -  (
3  x.  y ) ) ) `  2
)  -  ( ( y  e.  ( 1 [,] 2 )  |->  ( ( ( y ^
3 )  /  3
)  -  ( 3  x.  y ) ) ) `  1 ) )  =  ( ( 1  /  3 )  -  1 )
24316, 17dividi 9373 . . . . . 6  |-  ( 3  /  3 )  =  1
244243oveq2i 5721 . . . . 5  |-  ( ( 1  /  3 )  -  ( 3  / 
3 ) )  =  ( ( 1  / 
3 )  -  1 )
245242, 244eqtr4i 2276 . . . 4  |-  ( ( ( y  e.  ( 1 [,] 2 ) 
|->  ( ( ( y ^ 3 )  / 
3 )  -  (
3  x.  y ) ) ) `  2
)  -  ( ( y  e.  ( 1 [,] 2 )  |->  ( ( ( y ^
3 )  /  3
)  -  ( 3  x.  y ) ) ) `  1 ) )  =  ( ( 1  /  3 )  -  ( 3  / 
3 ) )
246 divsubdir 9336 . . . . 5  |-  ( ( 1  e.  CC  /\  3  e.  CC  /\  (
3  e.  CC  /\  3  =/=  0 ) )  ->  ( ( 1  -  3 )  / 
3 )  =  ( ( 1  /  3
)  -  ( 3  /  3 ) ) )
24745, 16, 232, 246mp3an 1282 . . . 4  |-  ( ( 1  -  3 )  /  3 )  =  ( ( 1  / 
3 )  -  (
3  /  3 ) )
248245, 247eqtr4i 2276 . . 3  |-  ( ( ( y  e.  ( 1 [,] 2 ) 
|->  ( ( ( y ^ 3 )  / 
3 )  -  (
3  x.  y ) ) ) `  2
)  -  ( ( y  e.  ( 1 [,] 2 )  |->  ( ( ( y ^
3 )  /  3
)  -  ( 3  x.  y ) ) ) `  1 ) )  =  ( ( 1  -  3 )  /  3 )
249 divneg 9335 . . . . 5  |-  ( ( 2  e.  CC  /\  3  e.  CC  /\  3  =/=  0 )  ->  -u (
2  /  3 )  =  ( -u 2  /  3 ) )
25046, 16, 17, 249mp3an 1282 . . . 4  |-  -u (
2  /  3 )  =  ( -u 2  /  3 )
25116, 45negsubdi2i 9012 . . . . . 6  |-  -u (
3  -  1 )  =  ( 1  -  3 )
25249negeqi 8925 . . . . . 6  |-  -u (
3  -  1 )  =  -u 2
253251, 252eqtr3i 2275 . . . . 5  |-  ( 1  -  3 )  = 
-u 2
254253oveq1i 5720 . . . 4  |-  ( ( 1  -  3 )  /  3 )  =  ( -u 2  / 
3 )
255250, 254eqtr4i 2276 . . 3  |-  -u (
2  /  3 )  =  ( ( 1  -  3 )  / 
3 )
256248, 255eqtr4i 2276 . 2  |-  ( ( ( y  e.  ( 1 [,] 2 ) 
|->  ( ( ( y ^ 3 )  / 
3 )  -  (
3  x.  y ) ) ) `  2
)  -  ( ( y  e.  ( 1 [,] 2 )  |->  ( ( ( y ^
3 )  /  3
)  -  ( 3  x.  y ) ) ) `  1 ) )  =  -u (
2  /  3 )
257168, 175, 2563eqtr3i 2281 1  |-  S. ( 1 (,) 2 ) ( ( x ^
2 )  -  3 )  _d x  = 
-u ( 2  / 
3 )
Colors of variables: wff set class
Syntax hints:    /\ wa 360    /\ w3a 939    T. wtru 1312    = wceq 1619    e. wcel 1621    =/= wne 2412   _Vcvv 2727    C_ wss 3078   {cpr 3545   class class class wbr 3920    e. cmpt 3974   dom cdm 4580   ran crn 4581    |` cres 4582   -->wf 4588   ` cfv 4592  (class class class)co 5710   CCcc 8615   RRcr 8616   0cc0 8617   1c1 8618    + caddc 8620    x. cmul 8622    <_ cle 8748    - cmin 8917   -ucneg 8918    / cdiv 9303   NNcn 9626   2c2 9675   3c3 9676   4c4 9677   6c6 9679   8c8 9681   NN0cn0 9844   ZZcz 9903   (,)cioo 10534   [,]cicc 10537   ^cexp 10982   TopOpenctopn 13200   topGenctg 13216  ℂfldccnfld 16209   intcnt 16586   -cn->ccncf 18212   volcvol 18655   L ^1cibl 18804   S.citg 18805    _D cdv 19045
This theorem was proved from axioms:  ax-1 7  ax-2 8  ax-3 9  ax-mp 10  ax-5 1533  ax-6 1534  ax-7 1535  ax-gen 1536  ax-8 1623  ax-11 1624  ax-13 1625  ax-14 1626  ax-17 1628  ax-12o 1664  ax-10 1678  ax-9 1684  ax-4 1692  ax-16 1926  ax-ext 2234  ax-rep 4028  ax-sep 4038  ax-nul 4046  ax-pow 4082  ax-pr 4108  ax-un 4403  ax-inf2 7226  ax-cc 7945  ax-cnex 8673  ax-resscn 8674  ax-1cn 8675  ax-icn 8676  ax-addcl 8677  ax-addrcl 8678  ax-mulcl 8679  ax-mulrcl 8680  ax-mulcom 8681  ax-addass 8682  ax-mulass 8683  ax-distr 8684  ax-i2m1 8685  ax-1ne0 8686  ax-1rid 8687  ax-rnegex 8688  ax-rrecex 8689  ax-cnre 8690  ax-pre-lttri 8691  ax-pre-lttrn 8692  ax-pre-ltadd 8693  ax-pre-mulgt0 8694  ax-pre-sup 8695  ax-addf 8696  ax-mulf 8697
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3or 940  df-3an 941  df-tru 1315  df-ex 1538  df-nf 1540  df-sb 1883  df-eu 2118  df-mo 2119  df-clab 2240  df-cleq 2246  df-clel 2249  df-nfc 2374  df-ne 2414  df-nel 2415  df-ral 2513  df-rex 2514  df-reu 2515  df-rab 2516  df-v 2729  df-sbc 2922  df-csb 3010  df-dif 3081  df-un 3083  df-in 3085  df-ss 3089  df-pss 3091  df-nul 3363  df-if 3471  df-pw 3532  df-sn 3550  df-pr 3551  df-tp 3552  df-op 3553  df-uni 3728  df-int 3761  df-iun 3805  df-iin 3806  df-disj 3892  df-br 3921  df-opab 3975  df-mpt 3976  df-tr 4011  df-eprel 4198  df-id 4202  df-po 4207  df-so 4208  df-fr 4245  df-se 4246  df-we 4247  df-ord 4288  df-on 4289  df-lim 4290  df-suc 4291  df-om 4548  df-xp 4594  df-rel 4595  df-cnv 4596  df-co 4597  df-dm 4598  df-rn 4599  df-res 4600  df-ima 4601  df-fun 4602  df-fn 4603  df-f 4604  df-f1 4605  df-fo 4606  df-f1o 4607  df-fv 4608  df-isom 4609  df-ov 5713  df-oprab 5714  df-mpt2 5715  df-of 5930  df-ofr 5931  df-1st 5974  df-2nd 5975  df-iota 6143  df-riota 6190  df-recs 6274  df-rdg 6309  df-1o 6365  df-2o 6366  df-oadd 6369  df-omul 6370  df-er 6546  df-map 6660  df-pm 6661  df-ixp 6704  df-en 6750  df-dom 6751  df-sdom 6752  df-fin 6753  df-fi 7049  df-sup 7078  df-oi 7109  df-card 7456  df-acn 7459  df-cda 7678  df-pnf 8749  df-mnf 8750  df-xr 8751  df-ltxr 8752  df-le 8753  df-sub 8919  df-neg 8920  df-div 9304  df-n 9627  df-2 9684  df-3 9685  df-4 9686  df-5 9687  df-6 9688  df-7 9689  df-8 9690  df-9 9691  df-10 9692  df-n0 9845  df-z 9904  df-dec 10004  df-uz 10110  df-q 10196  df-rp 10234  df-xneg 10331  df-xadd 10332  df-xmul 10333  df-ioo 10538  df-ioc 10539  df-ico 10540  df-icc 10541  df-fz 10661  df-fzo 10749  df-fl 10803  df-mod 10852  df-seq 10925  df-exp 10983  df-hash 11216  df-cj 11461  df-re 11462  df-im 11463  df-sqr 11597  df-abs 11598  df-limsup 11822  df-clim 11839  df-rlim 11840  df-sum 12036  df-struct 13024  df-ndx 13025  df-slot 13026  df-base 13027  df-sets 13028  df-ress 13029  df-plusg 13095  df-mulr 13096  df-starv 13097  df-sca 13098  df-vsca 13099  df-tset 13101  df-ple 13102  df-ds 13104  df-hom 13106  df-cco 13107  df-rest 13201  df-topn 13202  df-topgen 13218  df-pt 13219  df-prds 13222  df-xrs 13277  df-0g 13278  df-gsum 13279  df-qtop 13284  df-imas 13285  df-xps 13287  df-mre 13361  df-mrc 13362  df-acs 13363  df-mnd 14202  df-submnd 14251  df-mulg 14327  df-cntz 14628  df-cmn 14926  df-xmet 16205  df-met 16206  df-bl 16207  df-mopn 16208  df-cnfld 16210  df-top 16468  df-bases 16470  df-topon 16471  df-topsp 16472  df-cld 16588  df-ntr 16589  df-cls 16590  df-nei 16667  df-lp 16700  df-perf 16701  df-cn 16789  df-cnp 16790  df-haus 16875  df-cmp 16946  df-tx 17089  df-hmeo 17278  df-fbas 17352  df-fg 17353  df-fil 17373  df-fm 17465  df-flim 17466  df-flf 17467  df-xms 17717  df-ms 17718  df-tms 17719  df-cncf 18214  df-ovol 18656  df-vol 18657  df-mbf 18807  df-itg1 18808  df-itg2 18809  df-ibl 18810  df-itg 18811  df-0p 18857  df-limc 19048  df-dv 19049
  Copyright terms: Public domain W3C validator