Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ldual1dim Unicode version

Theorem ldual1dim 29649
Description: Equivalent expressions for a 1-dim subspace (ray) of functionals. (Contributed by NM, 24-Oct-2014.)
Hypotheses
Ref Expression
ldual1dim.f  |-  F  =  (LFnl `  W )
ldual1dim.l  |-  L  =  (LKer `  W )
ldual1dim.d  |-  D  =  (LDual `  W )
ldual1dim.n  |-  N  =  ( LSpan `  D )
ldual1dim.w  |-  ( ph  ->  W  e.  LVec )
ldual1dim.g  |-  ( ph  ->  G  e.  F )
Assertion
Ref Expression
ldual1dim  |-  ( ph  ->  ( N `  { G } )  =  {
g  e.  F  | 
( L `  G
)  C_  ( L `  g ) } )
Distinct variable groups:    D, g    g, G    g, N    ph, g
Allowed substitution hints:    F( g)    L( g)    W( g)

Proof of Theorem ldual1dim
Dummy variable  k is distinct from all other variables.
StepHypRef Expression
1 eqid 2404 . . . . . . . 8  |-  (Scalar `  W )  =  (Scalar `  W )
2 eqid 2404 . . . . . . . 8  |-  ( Base `  (Scalar `  W )
)  =  ( Base `  (Scalar `  W )
)
3 ldual1dim.d . . . . . . . 8  |-  D  =  (LDual `  W )
4 eqid 2404 . . . . . . . 8  |-  (Scalar `  D )  =  (Scalar `  D )
5 eqid 2404 . . . . . . . 8  |-  ( Base `  (Scalar `  D )
)  =  ( Base `  (Scalar `  D )
)
6 ldual1dim.w . . . . . . . 8  |-  ( ph  ->  W  e.  LVec )
71, 2, 3, 4, 5, 6ldualsbase 29616 . . . . . . 7  |-  ( ph  ->  ( Base `  (Scalar `  D ) )  =  ( Base `  (Scalar `  W ) ) )
87eleq2d 2471 . . . . . 6  |-  ( ph  ->  ( k  e.  (
Base `  (Scalar `  D
) )  <->  k  e.  ( Base `  (Scalar `  W
) ) ) )
98anbi1d 686 . . . . 5  |-  ( ph  ->  ( ( k  e.  ( Base `  (Scalar `  D ) )  /\  g  =  ( k
( .s `  D
) G ) )  <-> 
( k  e.  (
Base `  (Scalar `  W
) )  /\  g  =  ( k ( .s `  D ) G ) ) ) )
10 ldual1dim.f . . . . . . . 8  |-  F  =  (LFnl `  W )
11 eqid 2404 . . . . . . . 8  |-  ( Base `  W )  =  (
Base `  W )
12 eqid 2404 . . . . . . . 8  |-  ( .r
`  (Scalar `  W )
)  =  ( .r
`  (Scalar `  W )
)
13 eqid 2404 . . . . . . . 8  |-  ( .s
`  D )  =  ( .s `  D
)
146adantr 452 . . . . . . . 8  |-  ( (
ph  /\  k  e.  ( Base `  (Scalar `  W
) ) )  ->  W  e.  LVec )
15 simpr 448 . . . . . . . 8  |-  ( (
ph  /\  k  e.  ( Base `  (Scalar `  W
) ) )  -> 
k  e.  ( Base `  (Scalar `  W )
) )
16 ldual1dim.g . . . . . . . . 9  |-  ( ph  ->  G  e.  F )
1716adantr 452 . . . . . . . 8  |-  ( (
ph  /\  k  e.  ( Base `  (Scalar `  W
) ) )  ->  G  e.  F )
1810, 11, 1, 2, 12, 3, 13, 14, 15, 17ldualvs 29620 . . . . . . 7  |-  ( (
ph  /\  k  e.  ( Base `  (Scalar `  W
) ) )  -> 
( k ( .s
`  D ) G )  =  ( G  o F ( .r
`  (Scalar `  W )
) ( ( Base `  W )  X.  {
k } ) ) )
1918eqeq2d 2415 . . . . . 6  |-  ( (
ph  /\  k  e.  ( Base `  (Scalar `  W
) ) )  -> 
( g  =  ( k ( .s `  D ) G )  <-> 
g  =  ( G  o F ( .r
`  (Scalar `  W )
) ( ( Base `  W )  X.  {
k } ) ) ) )
2019pm5.32da 623 . . . . 5  |-  ( ph  ->  ( ( k  e.  ( Base `  (Scalar `  W ) )  /\  g  =  ( k
( .s `  D
) G ) )  <-> 
( k  e.  (
Base `  (Scalar `  W
) )  /\  g  =  ( G  o F ( .r `  (Scalar `  W ) ) ( ( Base `  W
)  X.  { k } ) ) ) ) )
219, 20bitrd 245 . . . 4  |-  ( ph  ->  ( ( k  e.  ( Base `  (Scalar `  D ) )  /\  g  =  ( k
( .s `  D
) G ) )  <-> 
( k  e.  (
Base `  (Scalar `  W
) )  /\  g  =  ( G  o F ( .r `  (Scalar `  W ) ) ( ( Base `  W
)  X.  { k } ) ) ) ) )
2221rexbidv2 2689 . . 3  |-  ( ph  ->  ( E. k  e.  ( Base `  (Scalar `  D ) ) g  =  ( k ( .s `  D ) G )  <->  E. k  e.  ( Base `  (Scalar `  W ) ) g  =  ( G  o F ( .r `  (Scalar `  W ) ) ( ( Base `  W
)  X.  { k } ) ) ) )
2322abbidv 2518 . 2  |-  ( ph  ->  { g  |  E. k  e.  ( Base `  (Scalar `  D )
) g  =  ( k ( .s `  D ) G ) }  =  { g  |  E. k  e.  ( Base `  (Scalar `  W ) ) g  =  ( G  o F ( .r `  (Scalar `  W ) ) ( ( Base `  W
)  X.  { k } ) ) } )
24 lveclmod 16133 . . . . 5  |-  ( W  e.  LVec  ->  W  e. 
LMod )
253, 24lduallmod 29636 . . . 4  |-  ( W  e.  LVec  ->  D  e. 
LMod )
266, 25syl 16 . . 3  |-  ( ph  ->  D  e.  LMod )
27 eqid 2404 . . . 4  |-  ( Base `  D )  =  (
Base `  D )
2810, 3, 27, 6, 16ldualelvbase 29610 . . 3  |-  ( ph  ->  G  e.  ( Base `  D ) )
29 ldual1dim.n . . . 4  |-  N  =  ( LSpan `  D )
304, 5, 27, 13, 29lspsn 16033 . . 3  |-  ( ( D  e.  LMod  /\  G  e.  ( Base `  D
) )  ->  ( N `  { G } )  =  {
g  |  E. k  e.  ( Base `  (Scalar `  D ) ) g  =  ( k ( .s `  D ) G ) } )
3126, 28, 30syl2anc 643 . 2  |-  ( ph  ->  ( N `  { G } )  =  {
g  |  E. k  e.  ( Base `  (Scalar `  D ) ) g  =  ( k ( .s `  D ) G ) } )
32 ldual1dim.l . . 3  |-  L  =  (LKer `  W )
3311, 1, 10, 32, 2, 12, 6, 16lfl1dim 29604 . 2  |-  ( ph  ->  { g  e.  F  |  ( L `  G )  C_  ( L `  g ) }  =  { g  |  E. k  e.  (
Base `  (Scalar `  W
) ) g  =  ( G  o F ( .r `  (Scalar `  W ) ) ( ( Base `  W
)  X.  { k } ) ) } )
3423, 31, 333eqtr4d 2446 1  |-  ( ph  ->  ( N `  { G } )  =  {
g  e.  F  | 
( L `  G
)  C_  ( L `  g ) } )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 359    = wceq 1649    e. wcel 1721   {cab 2390   E.wrex 2667   {crab 2670    C_ wss 3280   {csn 3774    X. cxp 4835   ` cfv 5413  (class class class)co 6040    o Fcof 6262   Basecbs 13424   .rcmulr 13485  Scalarcsca 13487   .scvsca 13488   LModclmod 15905   LSpanclspn 16002   LVecclvec 16129  LFnlclfn 29540  LKerclk 29568  LDualcld 29606
This theorem is referenced by:  mapdsn3  32126
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1662  ax-8 1683  ax-13 1723  ax-14 1725  ax-6 1740  ax-7 1745  ax-11 1757  ax-12 1946  ax-ext 2385  ax-rep 4280  ax-sep 4290  ax-nul 4298  ax-pow 4337  ax-pr 4363  ax-un 4660  ax-cnex 9002  ax-resscn 9003  ax-1cn 9004  ax-icn 9005  ax-addcl 9006  ax-addrcl 9007  ax-mulcl 9008  ax-mulrcl 9009  ax-mulcom 9010  ax-addass 9011  ax-mulass 9012  ax-distr 9013  ax-i2m1 9014  ax-1ne0 9015  ax-1rid 9016  ax-rnegex 9017  ax-rrecex 9018  ax-cnre 9019  ax-pre-lttri 9020  ax-pre-lttrn 9021  ax-pre-ltadd 9022  ax-pre-mulgt0 9023
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2258  df-mo 2259  df-clab 2391  df-cleq 2397  df-clel 2400  df-nfc 2529  df-ne 2569  df-nel 2570  df-ral 2671  df-rex 2672  df-reu 2673  df-rmo 2674  df-rab 2675  df-v 2918  df-sbc 3122  df-csb 3212  df-dif 3283  df-un 3285  df-in 3287  df-ss 3294  df-pss 3296  df-nul 3589  df-if 3700  df-pw 3761  df-sn 3780  df-pr 3781  df-tp 3782  df-op 3783  df-uni 3976  df-int 4011  df-iun 4055  df-br 4173  df-opab 4227  df-mpt 4228  df-tr 4263  df-eprel 4454  df-id 4458  df-po 4463  df-so 4464  df-fr 4501  df-we 4503  df-ord 4544  df-on 4545  df-lim 4546  df-suc 4547  df-om 4805  df-xp 4843  df-rel 4844  df-cnv 4845  df-co 4846  df-dm 4847  df-rn 4848  df-res 4849  df-ima 4850  df-iota 5377  df-fun 5415  df-fn 5416  df-f 5417  df-f1 5418  df-fo 5419  df-f1o 5420  df-fv 5421  df-ov 6043  df-oprab 6044  df-mpt2 6045  df-of 6264  df-1st 6308  df-2nd 6309  df-tpos 6438  df-riota 6508  df-recs 6592  df-rdg 6627  df-1o 6683  df-oadd 6687  df-er 6864  df-map 6979  df-en 7069  df-dom 7070  df-sdom 7071  df-fin 7072  df-pnf 9078  df-mnf 9079  df-xr 9080  df-ltxr 9081  df-le 9082  df-sub 9249  df-neg 9250  df-nn 9957  df-2 10014  df-3 10015  df-4 10016  df-5 10017  df-6 10018  df-n0 10178  df-z 10239  df-uz 10445  df-fz 11000  df-struct 13426  df-ndx 13427  df-slot 13428  df-base 13429  df-sets 13430  df-ress 13431  df-plusg 13497  df-mulr 13498  df-sca 13500  df-vsca 13501  df-0g 13682  df-mnd 14645  df-submnd 14694  df-grp 14767  df-minusg 14768  df-sbg 14769  df-subg 14896  df-cntz 15071  df-lsm 15225  df-cmn 15369  df-abl 15370  df-mgp 15604  df-rng 15618  df-ur 15620  df-oppr 15683  df-dvdsr 15701  df-unit 15702  df-invr 15732  df-drng 15792  df-lmod 15907  df-lss 15964  df-lsp 16003  df-lvec 16130  df-lshyp 29460  df-lfl 29541  df-lkr 29569  df-ldual 29607
  Copyright terms: Public domain W3C validator