MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  karden Unicode version

Theorem karden 7449
Description: If we allow the Axiom of Regularity, we can avoid the Axiom of Choice by defining the cardinal number of a set as the set of all sets equinumerous to it and having least possible rank. This theorem proves the equinumerosity relationship for this definition (compare carden 8055). The hypotheses correspond to the definition of kard of [Enderton] p. 222 (which we don't define separately since currently we do not use it elsewhere). This theorem along with kardex 7448 justify the definition of kard. The restriction to least rank prevents the proper class that would result from  { x  |  x  ~~  A }. (Contributed by NM, 18-Dec-2003.)
Hypotheses
Ref Expression
karden.1  |-  A  e. 
_V
karden.2  |-  B  e. 
_V
karden.3  |-  C  =  { x  |  ( x  ~~  A  /\  A. y ( y  ~~  A  ->  ( rank `  x
)  C_  ( rank `  y ) ) ) }
karden.4  |-  D  =  { x  |  ( x  ~~  B  /\  A. y ( y  ~~  B  ->  ( rank `  x
)  C_  ( rank `  y ) ) ) }
Assertion
Ref Expression
karden  |-  ( C  =  D  <->  A  ~~  B )
Distinct variable groups:    x, y, A    x, B, y
Allowed substitution hints:    C( x, y)    D( x, y)

Proof of Theorem karden
StepHypRef Expression
1 karden.1 . . . . . . . 8  |-  A  e. 
_V
21enref 6780 . . . . . . 7  |-  A  ~~  A
3 breq1 3923 . . . . . . . 8  |-  ( w  =  A  ->  (
w  ~~  A  <->  A  ~~  A ) )
41, 3cla4ev 2812 . . . . . . 7  |-  ( A 
~~  A  ->  E. w  w  ~~  A )
52, 4ax-mp 10 . . . . . 6  |-  E. w  w  ~~  A
6 abn0 3380 . . . . . 6  |-  ( { w  |  w  ~~  A }  =/=  (/)  <->  E. w  w  ~~  A )
75, 6mpbir 202 . . . . 5  |-  { w  |  w  ~~  A }  =/=  (/)
8 scott0 7440 . . . . . 6  |-  ( { w  |  w  ~~  A }  =  (/)  <->  { z  e.  { w  |  w 
~~  A }  |  A. y  e.  { w  |  w  ~~  A } 
( rank `  z )  C_  ( rank `  y
) }  =  (/) )
98necon3bii 2444 . . . . 5  |-  ( { w  |  w  ~~  A }  =/=  (/)  <->  { z  e.  { w  |  w 
~~  A }  |  A. y  e.  { w  |  w  ~~  A } 
( rank `  z )  C_  ( rank `  y
) }  =/=  (/) )
107, 9mpbi 201 . . . 4  |-  { z  e.  { w  |  w  ~~  A }  |  A. y  e.  {
w  |  w  ~~  A }  ( rank `  z )  C_  ( rank `  y ) }  =/=  (/)
11 rabn0 3381 . . . 4  |-  ( { z  e.  { w  |  w  ~~  A }  |  A. y  e.  {
w  |  w  ~~  A }  ( rank `  z )  C_  ( rank `  y ) }  =/=  (/)  <->  E. z  e.  {
w  |  w  ~~  A } A. y  e. 
{ w  |  w 
~~  A }  ( rank `  z )  C_  ( rank `  y )
)
1210, 11mpbi 201 . . 3  |-  E. z  e.  { w  |  w 
~~  A } A. y  e.  { w  |  w  ~~  A } 
( rank `  z )  C_  ( rank `  y
)
13 vex 2730 . . . . . . . 8  |-  z  e. 
_V
14 breq1 3923 . . . . . . . 8  |-  ( w  =  z  ->  (
w  ~~  A  <->  z  ~~  A ) )
1513, 14elab 2851 . . . . . . 7  |-  ( z  e.  { w  |  w  ~~  A }  <->  z 
~~  A )
16 breq1 3923 . . . . . . . 8  |-  ( w  =  y  ->  (
w  ~~  A  <->  y  ~~  A ) )
1716ralab 2863 . . . . . . 7  |-  ( A. y  e.  { w  |  w  ~~  A } 
( rank `  z )  C_  ( rank `  y
)  <->  A. y ( y 
~~  A  ->  ( rank `  z )  C_  ( rank `  y )
) )
1815, 17anbi12i 681 . . . . . 6  |-  ( ( z  e.  { w  |  w  ~~  A }  /\  A. y  e.  {
w  |  w  ~~  A }  ( rank `  z )  C_  ( rank `  y ) )  <-> 
( z  ~~  A  /\  A. y ( y 
~~  A  ->  ( rank `  z )  C_  ( rank `  y )
) ) )
19 simpl 445 . . . . . . . . 9  |-  ( ( z  ~~  A  /\  A. y ( y  ~~  A  ->  ( rank `  z
)  C_  ( rank `  y ) ) )  ->  z  ~~  A
)
2019a1i 12 . . . . . . . 8  |-  ( C  =  D  ->  (
( z  ~~  A  /\  A. y ( y 
~~  A  ->  ( rank `  z )  C_  ( rank `  y )
) )  ->  z  ~~  A ) )
21 karden.3 . . . . . . . . . . . 12  |-  C  =  { x  |  ( x  ~~  A  /\  A. y ( y  ~~  A  ->  ( rank `  x
)  C_  ( rank `  y ) ) ) }
22 karden.4 . . . . . . . . . . . 12  |-  D  =  { x  |  ( x  ~~  B  /\  A. y ( y  ~~  B  ->  ( rank `  x
)  C_  ( rank `  y ) ) ) }
2321, 22eqeq12i 2266 . . . . . . . . . . 11  |-  ( C  =  D  <->  { x  |  ( x  ~~  A  /\  A. y ( y  ~~  A  -> 
( rank `  x )  C_  ( rank `  y
) ) ) }  =  { x  |  ( x  ~~  B  /\  A. y ( y 
~~  B  ->  ( rank `  x )  C_  ( rank `  y )
) ) } )
24 abbi 2359 . . . . . . . . . . 11  |-  ( A. x ( ( x 
~~  A  /\  A. y ( y  ~~  A  ->  ( rank `  x
)  C_  ( rank `  y ) ) )  <-> 
( x  ~~  B  /\  A. y ( y 
~~  B  ->  ( rank `  x )  C_  ( rank `  y )
) ) )  <->  { x  |  ( x  ~~  A  /\  A. y ( y  ~~  A  -> 
( rank `  x )  C_  ( rank `  y
) ) ) }  =  { x  |  ( x  ~~  B  /\  A. y ( y 
~~  B  ->  ( rank `  x )  C_  ( rank `  y )
) ) } )
2523, 24bitr4i 245 . . . . . . . . . 10  |-  ( C  =  D  <->  A. x
( ( x  ~~  A  /\  A. y ( y  ~~  A  -> 
( rank `  x )  C_  ( rank `  y
) ) )  <->  ( x  ~~  B  /\  A. y
( y  ~~  B  ->  ( rank `  x
)  C_  ( rank `  y ) ) ) ) )
26 breq1 3923 . . . . . . . . . . . . 13  |-  ( x  =  z  ->  (
x  ~~  A  <->  z  ~~  A ) )
27 fveq2 5377 . . . . . . . . . . . . . . . 16  |-  ( x  =  z  ->  ( rank `  x )  =  ( rank `  z
) )
2827sseq1d 3126 . . . . . . . . . . . . . . 15  |-  ( x  =  z  ->  (
( rank `  x )  C_  ( rank `  y
)  <->  ( rank `  z
)  C_  ( rank `  y ) ) )
2928imbi2d 309 . . . . . . . . . . . . . 14  |-  ( x  =  z  ->  (
( y  ~~  A  ->  ( rank `  x
)  C_  ( rank `  y ) )  <->  ( y  ~~  A  ->  ( rank `  z )  C_  ( rank `  y ) ) ) )
3029albidv 2004 . . . . . . . . . . . . 13  |-  ( x  =  z  ->  ( A. y ( y  ~~  A  ->  ( rank `  x
)  C_  ( rank `  y ) )  <->  A. y
( y  ~~  A  ->  ( rank `  z
)  C_  ( rank `  y ) ) ) )
3126, 30anbi12d 694 . . . . . . . . . . . 12  |-  ( x  =  z  ->  (
( x  ~~  A  /\  A. y ( y 
~~  A  ->  ( rank `  x )  C_  ( rank `  y )
) )  <->  ( z  ~~  A  /\  A. y
( y  ~~  A  ->  ( rank `  z
)  C_  ( rank `  y ) ) ) ) )
32 breq1 3923 . . . . . . . . . . . . 13  |-  ( x  =  z  ->  (
x  ~~  B  <->  z  ~~  B ) )
3328imbi2d 309 . . . . . . . . . . . . . 14  |-  ( x  =  z  ->  (
( y  ~~  B  ->  ( rank `  x
)  C_  ( rank `  y ) )  <->  ( y  ~~  B  ->  ( rank `  z )  C_  ( rank `  y ) ) ) )
3433albidv 2004 . . . . . . . . . . . . 13  |-  ( x  =  z  ->  ( A. y ( y  ~~  B  ->  ( rank `  x
)  C_  ( rank `  y ) )  <->  A. y
( y  ~~  B  ->  ( rank `  z
)  C_  ( rank `  y ) ) ) )
3532, 34anbi12d 694 . . . . . . . . . . . 12  |-  ( x  =  z  ->  (
( x  ~~  B  /\  A. y ( y 
~~  B  ->  ( rank `  x )  C_  ( rank `  y )
) )  <->  ( z  ~~  B  /\  A. y
( y  ~~  B  ->  ( rank `  z
)  C_  ( rank `  y ) ) ) ) )
3631, 35bibi12d 314 . . . . . . . . . . 11  |-  ( x  =  z  ->  (
( ( x  ~~  A  /\  A. y ( y  ~~  A  -> 
( rank `  x )  C_  ( rank `  y
) ) )  <->  ( x  ~~  B  /\  A. y
( y  ~~  B  ->  ( rank `  x
)  C_  ( rank `  y ) ) ) )  <->  ( ( z 
~~  A  /\  A. y ( y  ~~  A  ->  ( rank `  z
)  C_  ( rank `  y ) ) )  <-> 
( z  ~~  B  /\  A. y ( y 
~~  B  ->  ( rank `  z )  C_  ( rank `  y )
) ) ) ) )
3736a4v 1996 . . . . . . . . . 10  |-  ( A. x ( ( x 
~~  A  /\  A. y ( y  ~~  A  ->  ( rank `  x
)  C_  ( rank `  y ) ) )  <-> 
( x  ~~  B  /\  A. y ( y 
~~  B  ->  ( rank `  x )  C_  ( rank `  y )
) ) )  -> 
( ( z  ~~  A  /\  A. y ( y  ~~  A  -> 
( rank `  z )  C_  ( rank `  y
) ) )  <->  ( z  ~~  B  /\  A. y
( y  ~~  B  ->  ( rank `  z
)  C_  ( rank `  y ) ) ) ) )
3825, 37sylbi 189 . . . . . . . . 9  |-  ( C  =  D  ->  (
( z  ~~  A  /\  A. y ( y 
~~  A  ->  ( rank `  z )  C_  ( rank `  y )
) )  <->  ( z  ~~  B  /\  A. y
( y  ~~  B  ->  ( rank `  z
)  C_  ( rank `  y ) ) ) ) )
39 simpl 445 . . . . . . . . 9  |-  ( ( z  ~~  B  /\  A. y ( y  ~~  B  ->  ( rank `  z
)  C_  ( rank `  y ) ) )  ->  z  ~~  B
)
4038, 39syl6bi 221 . . . . . . . 8  |-  ( C  =  D  ->  (
( z  ~~  A  /\  A. y ( y 
~~  A  ->  ( rank `  z )  C_  ( rank `  y )
) )  ->  z  ~~  B ) )
4120, 40jcad 521 . . . . . . 7  |-  ( C  =  D  ->  (
( z  ~~  A  /\  A. y ( y 
~~  A  ->  ( rank `  z )  C_  ( rank `  y )
) )  ->  (
z  ~~  A  /\  z  ~~  B ) ) )
42 ensym 6796 . . . . . . . 8  |-  ( z 
~~  A  ->  A  ~~  z )
43 entr 6798 . . . . . . . 8  |-  ( ( A  ~~  z  /\  z  ~~  B )  ->  A  ~~  B )
4442, 43sylan 459 . . . . . . 7  |-  ( ( z  ~~  A  /\  z  ~~  B )  ->  A  ~~  B )
4541, 44syl6 31 . . . . . 6  |-  ( C  =  D  ->  (
( z  ~~  A  /\  A. y ( y 
~~  A  ->  ( rank `  z )  C_  ( rank `  y )
) )  ->  A  ~~  B ) )
4618, 45syl5bi 210 . . . . 5  |-  ( C  =  D  ->  (
( z  e.  {
w  |  w  ~~  A }  /\  A. y  e.  { w  |  w 
~~  A }  ( rank `  z )  C_  ( rank `  y )
)  ->  A  ~~  B ) )
4746exp3a 427 . . . 4  |-  ( C  =  D  ->  (
z  e.  { w  |  w  ~~  A }  ->  ( A. y  e. 
{ w  |  w 
~~  A }  ( rank `  z )  C_  ( rank `  y )  ->  A  ~~  B ) ) )
4847rexlimdv 2628 . . 3  |-  ( C  =  D  ->  ( E. z  e.  { w  |  w  ~~  A } A. y  e.  { w  |  w  ~~  A } 
( rank `  z )  C_  ( rank `  y
)  ->  A  ~~  B ) )
4912, 48mpi 18 . 2  |-  ( C  =  D  ->  A  ~~  B )
50 enen2 6887 . . . . 5  |-  ( A 
~~  B  ->  (
x  ~~  A  <->  x  ~~  B ) )
51 enen2 6887 . . . . . . 7  |-  ( A 
~~  B  ->  (
y  ~~  A  <->  y  ~~  B ) )
5251imbi1d 310 . . . . . 6  |-  ( A 
~~  B  ->  (
( y  ~~  A  ->  ( rank `  x
)  C_  ( rank `  y ) )  <->  ( y  ~~  B  ->  ( rank `  x )  C_  ( rank `  y ) ) ) )
5352albidv 2004 . . . . 5  |-  ( A 
~~  B  ->  ( A. y ( y  ~~  A  ->  ( rank `  x
)  C_  ( rank `  y ) )  <->  A. y
( y  ~~  B  ->  ( rank `  x
)  C_  ( rank `  y ) ) ) )
5450, 53anbi12d 694 . . . 4  |-  ( A 
~~  B  ->  (
( x  ~~  A  /\  A. y ( y 
~~  A  ->  ( rank `  x )  C_  ( rank `  y )
) )  <->  ( x  ~~  B  /\  A. y
( y  ~~  B  ->  ( rank `  x
)  C_  ( rank `  y ) ) ) ) )
5554abbidv 2363 . . 3  |-  ( A 
~~  B  ->  { x  |  ( x  ~~  A  /\  A. y ( y  ~~  A  -> 
( rank `  x )  C_  ( rank `  y
) ) ) }  =  { x  |  ( x  ~~  B  /\  A. y ( y 
~~  B  ->  ( rank `  x )  C_  ( rank `  y )
) ) } )
5655, 21, 223eqtr4g 2310 . 2  |-  ( A 
~~  B  ->  C  =  D )
5749, 56impbii 182 1  |-  ( C  =  D  <->  A  ~~  B )
Colors of variables: wff set class
Syntax hints:    -> wi 6    <-> wb 178    /\ wa 360   A.wal 1532   E.wex 1537    = wceq 1619    e. wcel 1621   {cab 2239    =/= wne 2412   A.wral 2509   E.wrex 2510   {crab 2512   _Vcvv 2727    C_ wss 3078   (/)c0 3362   class class class wbr 3920   ` cfv 4592    ~~ cen 6746   rankcrnk 7319
This theorem was proved from axioms:  ax-1 7  ax-2 8  ax-3 9  ax-mp 10  ax-5 1533  ax-6 1534  ax-7 1535  ax-gen 1536  ax-8 1623  ax-11 1624  ax-13 1625  ax-14 1626  ax-17 1628  ax-12o 1664  ax-10 1678  ax-9 1684  ax-4 1692  ax-16 1926  ax-ext 2234  ax-sep 4038  ax-nul 4046  ax-pow 4082  ax-pr 4108  ax-un 4403
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3or 940  df-3an 941  df-tru 1315  df-ex 1538  df-nf 1540  df-sb 1883  df-eu 2118  df-mo 2119  df-clab 2240  df-cleq 2246  df-clel 2249  df-nfc 2374  df-ne 2414  df-ral 2513  df-rex 2514  df-reu 2515  df-rab 2516  df-v 2729  df-sbc 2922  df-csb 3010  df-dif 3081  df-un 3083  df-in 3085  df-ss 3089  df-pss 3091  df-nul 3363  df-if 3471  df-pw 3532  df-sn 3550  df-pr 3551  df-tp 3552  df-op 3553  df-uni 3728  df-int 3761  df-iun 3805  df-iin 3806  df-br 3921  df-opab 3975  df-mpt 3976  df-tr 4011  df-eprel 4198  df-id 4202  df-po 4207  df-so 4208  df-fr 4245  df-we 4247  df-ord 4288  df-on 4289  df-lim 4290  df-suc 4291  df-om 4548  df-xp 4594  df-rel 4595  df-cnv 4596  df-co 4597  df-dm 4598  df-rn 4599  df-res 4600  df-ima 4601  df-fun 4602  df-fn 4603  df-f 4604  df-f1 4605  df-fo 4606  df-f1o 4607  df-fv 4608  df-recs 6274  df-rdg 6309  df-er 6546  df-en 6750  df-r1 7320  df-rank 7321
  Copyright terms: Public domain W3C validator