Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  jm2.20nn Unicode version

Theorem jm2.20nn 26256
Description: Lemma 2.20 of [JonesMatijasevic] p. 696, the "first step down lemma". (Contributed by Stefan O'Rear, 27-Sep-2014.)
Assertion
Ref Expression
jm2.20nn  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  M  e.  NN  /\  N  e.  NN )  ->  (
( ( A Yrm  N ) ^ 2 )  ||  ( A Yrm  M )  <->  ( N  x.  ( A Yrm  N ) ) 
||  M ) )

Proof of Theorem jm2.20nn
StepHypRef Expression
1 simp1 960 . . . . . . . . . 10  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  M  e.  NN  /\  N  e.  NN )  ->  A  e.  ( ZZ>= `  2 )
)
2 nnz 9924 . . . . . . . . . . 11  |-  ( N  e.  NN  ->  N  e.  ZZ )
323ad2ant3 983 . . . . . . . . . 10  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  M  e.  NN  /\  N  e.  NN )  ->  N  e.  ZZ )
4 frmy 26165 . . . . . . . . . . 11  |- Yrm  : (
( ZZ>= `  2 )  X.  ZZ ) --> ZZ
54fovcl 5801 . . . . . . . . . 10  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  N  e.  ZZ )  ->  ( A Yrm 
N )  e.  ZZ )
61, 3, 5syl2anc 645 . . . . . . . . 9  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  M  e.  NN  /\  N  e.  NN )  ->  ( A Yrm 
N )  e.  ZZ )
76zcnd 9997 . . . . . . . 8  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  M  e.  NN  /\  N  e.  NN )  ->  ( A Yrm 
N )  e.  CC )
87adantr 453 . . . . . . 7  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  M  e.  NN  /\  N  e.  NN )  /\  (
( A Yrm  N ) ^
2 )  ||  ( A Yrm 
M ) )  -> 
( A Yrm  N )  e.  CC )
98sqvald 11120 . . . . . 6  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  M  e.  NN  /\  N  e.  NN )  /\  (
( A Yrm  N ) ^
2 )  ||  ( A Yrm 
M ) )  -> 
( ( A Yrm  N ) ^ 2 )  =  ( ( A Yrm  N )  x.  ( A Yrm  N ) ) )
10 zsqcl 11052 . . . . . . . . 9  |-  ( ( A Yrm  N )  e.  ZZ  ->  ( ( A Yrm  N ) ^ 2 )  e.  ZZ )
116, 10syl 17 . . . . . . . 8  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  M  e.  NN  /\  N  e.  NN )  ->  (
( A Yrm  N ) ^
2 )  e.  ZZ )
1211adantr 453 . . . . . . 7  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  M  e.  NN  /\  N  e.  NN )  /\  (
( A Yrm  N ) ^
2 )  ||  ( A Yrm 
M ) )  -> 
( ( A Yrm  N ) ^ 2 )  e.  ZZ )
13 frmx 26164 . . . . . . . . . . . 12  |- Xrm  : (
( ZZ>= `  2 )  X.  ZZ ) --> NN0
1413fovcl 5801 . . . . . . . . . . 11  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  N  e.  ZZ )  ->  ( A Xrm 
N )  e.  NN0 )
151, 3, 14syl2anc 645 . . . . . . . . . 10  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  M  e.  NN  /\  N  e.  NN )  ->  ( A Xrm 
N )  e.  NN0 )
1615nn0zd 9994 . . . . . . . . 9  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  M  e.  NN  /\  N  e.  NN )  ->  ( A Xrm 
N )  e.  ZZ )
1716adantr 453 . . . . . . . 8  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  M  e.  NN  /\  N  e.  NN )  /\  (
( A Yrm  N ) ^
2 )  ||  ( A Yrm 
M ) )  -> 
( A Xrm  N )  e.  ZZ )
187sqvald 11120 . . . . . . . . . . . . . 14  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  M  e.  NN  /\  N  e.  NN )  ->  (
( A Yrm  N ) ^
2 )  =  ( ( A Yrm  N )  x.  ( A Yrm  N ) ) )
1918adantr 453 . . . . . . . . . . . . 13  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  M  e.  NN  /\  N  e.  NN )  /\  (
( A Yrm  N ) ^
2 )  ||  ( A Yrm 
M ) )  -> 
( ( A Yrm  N ) ^ 2 )  =  ( ( A Yrm  N )  x.  ( A Yrm  N ) ) )
20 simpr 449 . . . . . . . . . . . . 13  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  M  e.  NN  /\  N  e.  NN )  /\  (
( A Yrm  N ) ^
2 )  ||  ( A Yrm 
M ) )  -> 
( ( A Yrm  N ) ^ 2 )  ||  ( A Yrm  M ) )
2119, 20eqbrtrrd 3942 . . . . . . . . . . . 12  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  M  e.  NN  /\  N  e.  NN )  /\  (
( A Yrm  N ) ^
2 )  ||  ( A Yrm 
M ) )  -> 
( ( A Yrm  N )  x.  ( A Yrm  N ) )  ||  ( A Yrm  M ) )
22 nnz 9924 . . . . . . . . . . . . . . . 16  |-  ( M  e.  NN  ->  M  e.  ZZ )
23223ad2ant2 982 . . . . . . . . . . . . . . 15  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  M  e.  NN  /\  N  e.  NN )  ->  M  e.  ZZ )
244fovcl 5801 . . . . . . . . . . . . . . 15  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  M  e.  ZZ )  ->  ( A Yrm 
M )  e.  ZZ )
251, 23, 24syl2anc 645 . . . . . . . . . . . . . 14  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  M  e.  NN  /\  N  e.  NN )  ->  ( A Yrm 
M )  e.  ZZ )
26 muldvds1 12427 . . . . . . . . . . . . . 14  |-  ( ( ( A Yrm  N )  e.  ZZ  /\  ( A Yrm  N )  e.  ZZ  /\  ( A Yrm  M )  e.  ZZ )  ->  (
( ( A Yrm  N )  x.  ( A Yrm  N ) )  ||  ( A Yrm  M )  ->  ( A Yrm  N
)  ||  ( A Yrm  M
) ) )
276, 6, 25, 26syl3anc 1187 . . . . . . . . . . . . 13  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  M  e.  NN  /\  N  e.  NN )  ->  (
( ( A Yrm  N )  x.  ( A Yrm  N ) )  ||  ( A Yrm  M )  ->  ( A Yrm  N
)  ||  ( A Yrm  M
) ) )
2827adantr 453 . . . . . . . . . . . 12  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  M  e.  NN  /\  N  e.  NN )  /\  (
( A Yrm  N ) ^
2 )  ||  ( A Yrm 
M ) )  -> 
( ( ( A Yrm  N )  x.  ( A Yrm  N ) )  ||  ( A Yrm 
M )  ->  ( A Yrm 
N )  ||  ( A Yrm 
M ) ) )
2921, 28mpd 16 . . . . . . . . . . 11  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  M  e.  NN  /\  N  e.  NN )  /\  (
( A Yrm  N ) ^
2 )  ||  ( A Yrm 
M ) )  -> 
( A Yrm  N )  ||  ( A Yrm  M ) )
30 simpl1 963 . . . . . . . . . . . 12  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  M  e.  NN  /\  N  e.  NN )  /\  (
( A Yrm  N ) ^
2 )  ||  ( A Yrm 
M ) )  ->  A  e.  ( ZZ>= ` 
2 ) )
313adantr 453 . . . . . . . . . . . 12  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  M  e.  NN  /\  N  e.  NN )  /\  (
( A Yrm  N ) ^
2 )  ||  ( A Yrm 
M ) )  ->  N  e.  ZZ )
3223adantr 453 . . . . . . . . . . . 12  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  M  e.  NN  /\  N  e.  NN )  /\  (
( A Yrm  N ) ^
2 )  ||  ( A Yrm 
M ) )  ->  M  e.  ZZ )
33 jm2.19 26252 . . . . . . . . . . . 12  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  N  e.  ZZ  /\  M  e.  ZZ )  ->  ( N  ||  M  <->  ( A Yrm  N
)  ||  ( A Yrm  M
) ) )
3430, 31, 32, 33syl3anc 1187 . . . . . . . . . . 11  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  M  e.  NN  /\  N  e.  NN )  /\  (
( A Yrm  N ) ^
2 )  ||  ( A Yrm 
M ) )  -> 
( N  ||  M  <->  ( A Yrm  N )  ||  ( A Yrm 
M ) ) )
3529, 34mpbird 225 . . . . . . . . . 10  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  M  e.  NN  /\  N  e.  NN )  /\  (
( A Yrm  N ) ^
2 )  ||  ( A Yrm 
M ) )  ->  N  ||  M )
36 simpl2 964 . . . . . . . . . . 11  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  M  e.  NN  /\  N  e.  NN )  /\  (
( A Yrm  N ) ^
2 )  ||  ( A Yrm 
M ) )  ->  M  e.  NN )
37 simpl3 965 . . . . . . . . . . 11  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  M  e.  NN  /\  N  e.  NN )  /\  (
( A Yrm  N ) ^
2 )  ||  ( A Yrm 
M ) )  ->  N  e.  NN )
38 nndivdivides 12411 . . . . . . . . . . 11  |-  ( ( M  e.  NN  /\  N  e.  NN )  ->  ( N  ||  M  <->  ( M  /  N )  e.  NN ) )
3936, 37, 38syl2anc 645 . . . . . . . . . 10  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  M  e.  NN  /\  N  e.  NN )  /\  (
( A Yrm  N ) ^
2 )  ||  ( A Yrm 
M ) )  -> 
( N  ||  M  <->  ( M  /  N )  e.  NN ) )
4035, 39mpbid 203 . . . . . . . . 9  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  M  e.  NN  /\  N  e.  NN )  /\  (
( A Yrm  N ) ^
2 )  ||  ( A Yrm 
M ) )  -> 
( M  /  N
)  e.  NN )
41 nnm1nn0 9884 . . . . . . . . 9  |-  ( ( M  /  N )  e.  NN  ->  (
( M  /  N
)  -  1 )  e.  NN0 )
4240, 41syl 17 . . . . . . . 8  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  M  e.  NN  /\  N  e.  NN )  /\  (
( A Yrm  N ) ^
2 )  ||  ( A Yrm 
M ) )  -> 
( ( M  /  N )  -  1 )  e.  NN0 )
43 zexpcl 10996 . . . . . . . 8  |-  ( ( ( A Xrm  N )  e.  ZZ  /\  ( ( M  /  N )  -  1 )  e. 
NN0 )  ->  (
( A Xrm  N ) ^
( ( M  /  N )  -  1 ) )  e.  ZZ )
4417, 42, 43syl2anc 645 . . . . . . 7  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  M  e.  NN  /\  N  e.  NN )  /\  (
( A Yrm  N ) ^
2 )  ||  ( A Yrm 
M ) )  -> 
( ( A Xrm  N ) ^ ( ( M  /  N )  - 
1 ) )  e.  ZZ )
4540nnzd 9995 . . . . . . . 8  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  M  e.  NN  /\  N  e.  NN )  /\  (
( A Yrm  N ) ^
2 )  ||  ( A Yrm 
M ) )  -> 
( M  /  N
)  e.  ZZ )
466adantr 453 . . . . . . . 8  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  M  e.  NN  /\  N  e.  NN )  /\  (
( A Yrm  N ) ^
2 )  ||  ( A Yrm 
M ) )  -> 
( A Yrm  N )  e.  ZZ )
4745, 46zmulcld 10002 . . . . . . 7  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  M  e.  NN  /\  N  e.  NN )  /\  (
( A Yrm  N ) ^
2 )  ||  ( A Yrm 
M ) )  -> 
( ( M  /  N )  x.  ( A Yrm 
N ) )  e.  ZZ )
4825adantr 453 . . . . . . . . 9  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  M  e.  NN  /\  N  e.  NN )  /\  (
( A Yrm  N ) ^
2 )  ||  ( A Yrm 
M ) )  -> 
( A Yrm  M )  e.  ZZ )
49 nncn 9634 . . . . . . . . . . . . . . 15  |-  ( M  e.  NN  ->  M  e.  CC )
50493ad2ant2 982 . . . . . . . . . . . . . 14  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  M  e.  NN  /\  N  e.  NN )  ->  M  e.  CC )
51 nncn 9634 . . . . . . . . . . . . . . 15  |-  ( N  e.  NN  ->  N  e.  CC )
52513ad2ant3 983 . . . . . . . . . . . . . 14  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  M  e.  NN  /\  N  e.  NN )  ->  N  e.  CC )
53 nnne0 9658 . . . . . . . . . . . . . . 15  |-  ( N  e.  NN  ->  N  =/=  0 )
54533ad2ant3 983 . . . . . . . . . . . . . 14  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  M  e.  NN  /\  N  e.  NN )  ->  N  =/=  0 )
5550, 52, 54divcan2d 9418 . . . . . . . . . . . . 13  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  M  e.  NN  /\  N  e.  NN )  ->  ( N  x.  ( M  /  N ) )  =  M )
5655oveq2d 5726 . . . . . . . . . . . 12  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  M  e.  NN  /\  N  e.  NN )  ->  ( A Yrm  ( N  x.  ( M  /  N ) ) )  =  ( A Yrm  M ) )
5756, 25eqeltrd 2327 . . . . . . . . . . 11  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  M  e.  NN  /\  N  e.  NN )  ->  ( A Yrm  ( N  x.  ( M  /  N ) ) )  e.  ZZ )
5857adantr 453 . . . . . . . . . 10  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  M  e.  NN  /\  N  e.  NN )  /\  (
( A Yrm  N ) ^
2 )  ||  ( A Yrm 
M ) )  -> 
( A Yrm  ( N  x.  ( M  /  N
) ) )  e.  ZZ )
5944, 46zmulcld 10002 . . . . . . . . . . 11  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  M  e.  NN  /\  N  e.  NN )  /\  (
( A Yrm  N ) ^
2 )  ||  ( A Yrm 
M ) )  -> 
( ( ( A Xrm  N ) ^ ( ( M  /  N )  -  1 ) )  x.  ( A Yrm  N ) )  e.  ZZ )
6045, 59zmulcld 10002 . . . . . . . . . 10  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  M  e.  NN  /\  N  e.  NN )  /\  (
( A Yrm  N ) ^
2 )  ||  ( A Yrm 
M ) )  -> 
( ( M  /  N )  x.  (
( ( A Xrm  N ) ^ ( ( M  /  N )  - 
1 ) )  x.  ( A Yrm  N ) ) )  e.  ZZ )
6158, 60zsubcld 10001 . . . . . . . . 9  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  M  e.  NN  /\  N  e.  NN )  /\  (
( A Yrm  N ) ^
2 )  ||  ( A Yrm 
M ) )  -> 
( ( A Yrm  ( N  x.  ( M  /  N ) ) )  -  ( ( M  /  N )  x.  ( ( ( A Xrm  N ) ^ ( ( M  /  N )  -  1 ) )  x.  ( A Yrm  N ) ) ) )  e.  ZZ )
62 3nn0 9862 . . . . . . . . . . . . 13  |-  3  e.  NN0
6362a1i 12 . . . . . . . . . . . 12  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  M  e.  NN  /\  N  e.  NN )  ->  3  e.  NN0 )
64 zexpcl 10996 . . . . . . . . . . . 12  |-  ( ( ( A Yrm  N )  e.  ZZ  /\  3  e. 
NN0 )  ->  (
( A Yrm  N ) ^
3 )  e.  ZZ )
656, 63, 64syl2anc 645 . . . . . . . . . . 11  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  M  e.  NN  /\  N  e.  NN )  ->  (
( A Yrm  N ) ^
3 )  e.  ZZ )
6665adantr 453 . . . . . . . . . 10  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  M  e.  NN  /\  N  e.  NN )  /\  (
( A Yrm  N ) ^
2 )  ||  ( A Yrm 
M ) )  -> 
( ( A Yrm  N ) ^ 3 )  e.  ZZ )
67 2nn0 9861 . . . . . . . . . . . . 13  |-  2  e.  NN0
6867a1i 12 . . . . . . . . . . . 12  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  M  e.  NN  /\  N  e.  NN )  ->  2  e.  NN0 )
6962nn0zi 9927 . . . . . . . . . . . . . 14  |-  3  e.  ZZ
70 2re 9695 . . . . . . . . . . . . . . 15  |-  2  e.  RR
71 3re 9697 . . . . . . . . . . . . . . 15  |-  3  e.  RR
72 2lt3 9766 . . . . . . . . . . . . . . 15  |-  2  <  3
7370, 71, 72ltleii 8821 . . . . . . . . . . . . . 14  |-  2  <_  3
74 2z 9933 . . . . . . . . . . . . . . 15  |-  2  e.  ZZ
7574eluz1i 10116 . . . . . . . . . . . . . 14  |-  ( 3  e.  ( ZZ>= `  2
)  <->  ( 3  e.  ZZ  /\  2  <_ 
3 ) )
7669, 73, 75mpbir2an 891 . . . . . . . . . . . . 13  |-  3  e.  ( ZZ>= `  2 )
7776a1i 12 . . . . . . . . . . . 12  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  M  e.  NN  /\  N  e.  NN )  ->  3  e.  ( ZZ>= `  2 )
)
78 dvdsexp 12458 . . . . . . . . . . . 12  |-  ( ( ( A Yrm  N )  e.  ZZ  /\  2  e. 
NN0  /\  3  e.  ( ZZ>= `  2 )
)  ->  ( ( A Yrm 
N ) ^ 2 )  ||  ( ( A Yrm  N ) ^ 3 ) )
796, 68, 77, 78syl3anc 1187 . . . . . . . . . . 11  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  M  e.  NN  /\  N  e.  NN )  ->  (
( A Yrm  N ) ^
2 )  ||  (
( A Yrm  N ) ^
3 ) )
8079adantr 453 . . . . . . . . . 10  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  M  e.  NN  /\  N  e.  NN )  /\  (
( A Yrm  N ) ^
2 )  ||  ( A Yrm 
M ) )  -> 
( ( A Yrm  N ) ^ 2 )  ||  ( ( A Yrm  N ) ^ 3 ) )
81 jm2.23 26255 . . . . . . . . . . 11  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  N  e.  ZZ  /\  ( M  /  N )  e.  NN )  ->  (
( A Yrm  N ) ^
3 )  ||  (
( A Yrm  ( N  x.  ( M  /  N
) ) )  -  ( ( M  /  N )  x.  (
( ( A Xrm  N ) ^ ( ( M  /  N )  - 
1 ) )  x.  ( A Yrm  N ) ) ) ) )
8230, 31, 40, 81syl3anc 1187 . . . . . . . . . 10  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  M  e.  NN  /\  N  e.  NN )  /\  (
( A Yrm  N ) ^
2 )  ||  ( A Yrm 
M ) )  -> 
( ( A Yrm  N ) ^ 3 )  ||  ( ( A Yrm  ( N  x.  ( M  /  N ) ) )  -  ( ( M  /  N )  x.  ( ( ( A Xrm  N ) ^ ( ( M  /  N )  -  1 ) )  x.  ( A Yrm  N ) ) ) ) )
83 dvdstr 12436 . . . . . . . . . . 11  |-  ( ( ( ( A Yrm  N ) ^ 2 )  e.  ZZ  /\  ( ( A Yrm  N ) ^ 3 )  e.  ZZ  /\  ( ( A Yrm  ( N  x.  ( M  /  N ) ) )  -  ( ( M  /  N )  x.  ( ( ( A Xrm  N ) ^ ( ( M  /  N )  -  1 ) )  x.  ( A Yrm  N ) ) ) )  e.  ZZ )  ->  (
( ( ( A Yrm  N ) ^ 2 ) 
||  ( ( A Yrm  N ) ^ 3 )  /\  ( ( A Yrm  N ) ^ 3 ) 
||  ( ( A Yrm  ( N  x.  ( M  /  N ) ) )  -  ( ( M  /  N )  x.  ( ( ( A Xrm  N ) ^ (
( M  /  N
)  -  1 ) )  x.  ( A Yrm  N ) ) ) ) )  ->  ( ( A Yrm 
N ) ^ 2 )  ||  ( ( A Yrm  ( N  x.  ( M  /  N ) ) )  -  ( ( M  /  N )  x.  ( ( ( A Xrm  N ) ^ (
( M  /  N
)  -  1 ) )  x.  ( A Yrm  N ) ) ) ) ) )
8483imp 420 . . . . . . . . . 10  |-  ( ( ( ( ( A Yrm  N ) ^ 2 )  e.  ZZ  /\  (
( A Yrm  N ) ^
3 )  e.  ZZ  /\  ( ( A Yrm  ( N  x.  ( M  /  N ) ) )  -  ( ( M  /  N )  x.  ( ( ( A Xrm  N ) ^ ( ( M  /  N )  -  1 ) )  x.  ( A Yrm  N ) ) ) )  e.  ZZ )  /\  (
( ( A Yrm  N ) ^ 2 )  ||  ( ( A Yrm  N ) ^ 3 )  /\  ( ( A Yrm  N ) ^ 3 )  ||  ( ( A Yrm  ( N  x.  ( M  /  N ) ) )  -  ( ( M  /  N )  x.  ( ( ( A Xrm  N ) ^ ( ( M  /  N )  -  1 ) )  x.  ( A Yrm  N ) ) ) ) ) )  ->  ( ( A Yrm 
N ) ^ 2 )  ||  ( ( A Yrm  ( N  x.  ( M  /  N ) ) )  -  ( ( M  /  N )  x.  ( ( ( A Xrm  N ) ^ (
( M  /  N
)  -  1 ) )  x.  ( A Yrm  N ) ) ) ) )
8512, 66, 61, 80, 82, 84syl32anc 1195 . . . . . . . . 9  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  M  e.  NN  /\  N  e.  NN )  /\  (
( A Yrm  N ) ^
2 )  ||  ( A Yrm 
M ) )  -> 
( ( A Yrm  N ) ^ 2 )  ||  ( ( A Yrm  ( N  x.  ( M  /  N ) ) )  -  ( ( M  /  N )  x.  ( ( ( A Xrm  N ) ^ ( ( M  /  N )  -  1 ) )  x.  ( A Yrm  N ) ) ) ) )
86 dvds2sub 12435 . . . . . . . . . 10  |-  ( ( ( ( A Yrm  N ) ^ 2 )  e.  ZZ  /\  ( A Yrm  M )  e.  ZZ  /\  ( ( A Yrm  ( N  x.  ( M  /  N ) ) )  -  ( ( M  /  N )  x.  ( ( ( A Xrm  N ) ^ ( ( M  /  N )  -  1 ) )  x.  ( A Yrm  N ) ) ) )  e.  ZZ )  ->  (
( ( ( A Yrm  N ) ^ 2 ) 
||  ( A Yrm  M )  /\  ( ( A Yrm  N ) ^ 2 ) 
||  ( ( A Yrm  ( N  x.  ( M  /  N ) ) )  -  ( ( M  /  N )  x.  ( ( ( A Xrm  N ) ^ (
( M  /  N
)  -  1 ) )  x.  ( A Yrm  N ) ) ) ) )  ->  ( ( A Yrm 
N ) ^ 2 )  ||  ( ( A Yrm  M )  -  (
( A Yrm  ( N  x.  ( M  /  N
) ) )  -  ( ( M  /  N )  x.  (
( ( A Xrm  N ) ^ ( ( M  /  N )  - 
1 ) )  x.  ( A Yrm  N ) ) ) ) ) ) )
8786imp 420 . . . . . . . . 9  |-  ( ( ( ( ( A Yrm  N ) ^ 2 )  e.  ZZ  /\  ( A Yrm 
M )  e.  ZZ  /\  ( ( A Yrm  ( N  x.  ( M  /  N ) ) )  -  ( ( M  /  N )  x.  ( ( ( A Xrm  N ) ^ ( ( M  /  N )  -  1 ) )  x.  ( A Yrm  N ) ) ) )  e.  ZZ )  /\  (
( ( A Yrm  N ) ^ 2 )  ||  ( A Yrm  M )  /\  ( ( A Yrm  N ) ^ 2 )  ||  ( ( A Yrm  ( N  x.  ( M  /  N ) ) )  -  ( ( M  /  N )  x.  ( ( ( A Xrm  N ) ^ ( ( M  /  N )  -  1 ) )  x.  ( A Yrm  N ) ) ) ) ) )  ->  ( ( A Yrm 
N ) ^ 2 )  ||  ( ( A Yrm  M )  -  (
( A Yrm  ( N  x.  ( M  /  N
) ) )  -  ( ( M  /  N )  x.  (
( ( A Xrm  N ) ^ ( ( M  /  N )  - 
1 ) )  x.  ( A Yrm  N ) ) ) ) ) )
8812, 48, 61, 20, 85, 87syl32anc 1195 . . . . . . . 8  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  M  e.  NN  /\  N  e.  NN )  /\  (
( A Yrm  N ) ^
2 )  ||  ( A Yrm 
M ) )  -> 
( ( A Yrm  N ) ^ 2 )  ||  ( ( A Yrm  M )  -  ( ( A Yrm  ( N  x.  ( M  /  N ) ) )  -  ( ( M  /  N )  x.  ( ( ( A Xrm  N ) ^ (
( M  /  N
)  -  1 ) )  x.  ( A Yrm  N ) ) ) ) ) )
8955adantr 453 . . . . . . . . . . . 12  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  M  e.  NN  /\  N  e.  NN )  /\  (
( A Yrm  N ) ^
2 )  ||  ( A Yrm 
M ) )  -> 
( N  x.  ( M  /  N ) )  =  M )
9089oveq2d 5726 . . . . . . . . . . 11  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  M  e.  NN  /\  N  e.  NN )  /\  (
( A Yrm  N ) ^
2 )  ||  ( A Yrm 
M ) )  -> 
( A Yrm  ( N  x.  ( M  /  N
) ) )  =  ( A Yrm  M ) )
9190oveq1d 5725 . . . . . . . . . 10  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  M  e.  NN  /\  N  e.  NN )  /\  (
( A Yrm  N ) ^
2 )  ||  ( A Yrm 
M ) )  -> 
( ( A Yrm  ( N  x.  ( M  /  N ) ) )  -  ( ( M  /  N )  x.  ( ( ( A Xrm  N ) ^ ( ( M  /  N )  -  1 ) )  x.  ( A Yrm  N ) ) ) )  =  ( ( A Yrm  M )  -  ( ( M  /  N )  x.  ( ( ( A Xrm  N ) ^ ( ( M  /  N )  -  1 ) )  x.  ( A Yrm  N ) ) ) ) )
9291oveq2d 5726 . . . . . . . . 9  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  M  e.  NN  /\  N  e.  NN )  /\  (
( A Yrm  N ) ^
2 )  ||  ( A Yrm 
M ) )  -> 
( ( A Yrm  M )  -  ( ( A Yrm  ( N  x.  ( M  /  N ) ) )  -  ( ( M  /  N )  x.  ( ( ( A Xrm  N ) ^ (
( M  /  N
)  -  1 ) )  x.  ( A Yrm  N ) ) ) ) )  =  ( ( A Yrm  M )  -  (
( A Yrm  M )  -  ( ( M  /  N )  x.  (
( ( A Xrm  N ) ^ ( ( M  /  N )  - 
1 ) )  x.  ( A Yrm  N ) ) ) ) ) )
9325zcnd 9997 . . . . . . . . . . . 12  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  M  e.  NN  /\  N  e.  NN )  ->  ( A Yrm 
M )  e.  CC )
9493adantr 453 . . . . . . . . . . 11  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  M  e.  NN  /\  N  e.  NN )  /\  (
( A Yrm  N ) ^
2 )  ||  ( A Yrm 
M ) )  -> 
( A Yrm  M )  e.  CC )
9560zcnd 9997 . . . . . . . . . . 11  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  M  e.  NN  /\  N  e.  NN )  /\  (
( A Yrm  N ) ^
2 )  ||  ( A Yrm 
M ) )  -> 
( ( M  /  N )  x.  (
( ( A Xrm  N ) ^ ( ( M  /  N )  - 
1 ) )  x.  ( A Yrm  N ) ) )  e.  CC )
9694, 95nncand 9042 . . . . . . . . . 10  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  M  e.  NN  /\  N  e.  NN )  /\  (
( A Yrm  N ) ^
2 )  ||  ( A Yrm 
M ) )  -> 
( ( A Yrm  M )  -  ( ( A Yrm  M )  -  ( ( M  /  N )  x.  ( ( ( A Xrm  N ) ^ (
( M  /  N
)  -  1 ) )  x.  ( A Yrm  N ) ) ) ) )  =  ( ( M  /  N )  x.  ( ( ( A Xrm  N ) ^ (
( M  /  N
)  -  1 ) )  x.  ( A Yrm  N ) ) ) )
9745zcnd 9997 . . . . . . . . . . 11  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  M  e.  NN  /\  N  e.  NN )  /\  (
( A Yrm  N ) ^
2 )  ||  ( A Yrm 
M ) )  -> 
( M  /  N
)  e.  CC )
9844zcnd 9997 . . . . . . . . . . 11  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  M  e.  NN  /\  N  e.  NN )  /\  (
( A Yrm  N ) ^
2 )  ||  ( A Yrm 
M ) )  -> 
( ( A Xrm  N ) ^ ( ( M  /  N )  - 
1 ) )  e.  CC )
9997, 98, 8mul12d 8901 . . . . . . . . . 10  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  M  e.  NN  /\  N  e.  NN )  /\  (
( A Yrm  N ) ^
2 )  ||  ( A Yrm 
M ) )  -> 
( ( M  /  N )  x.  (
( ( A Xrm  N ) ^ ( ( M  /  N )  - 
1 ) )  x.  ( A Yrm  N ) ) )  =  ( ( ( A Xrm  N ) ^
( ( M  /  N )  -  1 ) )  x.  (
( M  /  N
)  x.  ( A Yrm  N ) ) ) )
10096, 99eqtrd 2285 . . . . . . . . 9  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  M  e.  NN  /\  N  e.  NN )  /\  (
( A Yrm  N ) ^
2 )  ||  ( A Yrm 
M ) )  -> 
( ( A Yrm  M )  -  ( ( A Yrm  M )  -  ( ( M  /  N )  x.  ( ( ( A Xrm  N ) ^ (
( M  /  N
)  -  1 ) )  x.  ( A Yrm  N ) ) ) ) )  =  ( ( ( A Xrm  N ) ^
( ( M  /  N )  -  1 ) )  x.  (
( M  /  N
)  x.  ( A Yrm  N ) ) ) )
10192, 100eqtrd 2285 . . . . . . . 8  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  M  e.  NN  /\  N  e.  NN )  /\  (
( A Yrm  N ) ^
2 )  ||  ( A Yrm 
M ) )  -> 
( ( A Yrm  M )  -  ( ( A Yrm  ( N  x.  ( M  /  N ) ) )  -  ( ( M  /  N )  x.  ( ( ( A Xrm  N ) ^ (
( M  /  N
)  -  1 ) )  x.  ( A Yrm  N ) ) ) ) )  =  ( ( ( A Xrm  N ) ^
( ( M  /  N )  -  1 ) )  x.  (
( M  /  N
)  x.  ( A Yrm  N ) ) ) )
10288, 101breqtrd 3944 . . . . . . 7  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  M  e.  NN  /\  N  e.  NN )  /\  (
( A Yrm  N ) ^
2 )  ||  ( A Yrm 
M ) )  -> 
( ( A Yrm  N ) ^ 2 )  ||  ( ( ( A Xrm  N ) ^ ( ( M  /  N )  -  1 ) )  x.  ( ( M  /  N )  x.  ( A Yrm  N ) ) ) )
103 gcdcom 12573 . . . . . . . . . . 11  |-  ( ( ( A Yrm  N )  e.  ZZ  /\  ( A Xrm  N )  e.  ZZ )  ->  ( ( A Yrm  N )  gcd  ( A Xrm  N ) )  =  ( ( A Xrm  N )  gcd  ( A Yrm  N ) ) )
1046, 16, 103syl2anc 645 . . . . . . . . . 10  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  M  e.  NN  /\  N  e.  NN )  ->  (
( A Yrm  N )  gcd  ( A Xrm  N ) )  =  ( ( A Xrm  N )  gcd  ( A Yrm  N ) ) )
105 jm2.19lem1 26248 . . . . . . . . . . 11  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  N  e.  ZZ )  ->  (
( A Xrm  N )  gcd  ( A Yrm  N ) )  =  1 )
1061, 3, 105syl2anc 645 . . . . . . . . . 10  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  M  e.  NN  /\  N  e.  NN )  ->  (
( A Xrm  N )  gcd  ( A Yrm  N ) )  =  1 )
107104, 106eqtrd 2285 . . . . . . . . 9  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  M  e.  NN  /\  N  e.  NN )  ->  (
( A Yrm  N )  gcd  ( A Xrm  N ) )  =  1 )
108107adantr 453 . . . . . . . 8  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  M  e.  NN  /\  N  e.  NN )  /\  (
( A Yrm  N ) ^
2 )  ||  ( A Yrm 
M ) )  -> 
( ( A Yrm  N )  gcd  ( A Xrm  N ) )  =  1 )
10967a1i 12 . . . . . . . . 9  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  M  e.  NN  /\  N  e.  NN )  /\  (
( A Yrm  N ) ^
2 )  ||  ( A Yrm 
M ) )  -> 
2  e.  NN0 )
110 rpexp12i 12675 . . . . . . . . 9  |-  ( ( ( A Yrm  N )  e.  ZZ  /\  ( A Xrm  N )  e.  ZZ  /\  ( 2  e.  NN0  /\  ( ( M  /  N )  -  1 )  e.  NN0 )
)  ->  ( (
( A Yrm  N )  gcd  ( A Xrm  N ) )  =  1  ->  (
( ( A Yrm  N ) ^ 2 )  gcd  ( ( A Xrm  N ) ^ ( ( M  /  N )  - 
1 ) ) )  =  1 ) )
11146, 17, 109, 42, 110syl112anc 1191 . . . . . . . 8  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  M  e.  NN  /\  N  e.  NN )  /\  (
( A Yrm  N ) ^
2 )  ||  ( A Yrm 
M ) )  -> 
( ( ( A Yrm  N )  gcd  ( A Xrm  N ) )  =  1  ->  ( ( ( A Yrm  N ) ^ 2 )  gcd  ( ( A Xrm  N ) ^ (
( M  /  N
)  -  1 ) ) )  =  1 ) )
112108, 111mpd 16 . . . . . . 7  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  M  e.  NN  /\  N  e.  NN )  /\  (
( A Yrm  N ) ^
2 )  ||  ( A Yrm 
M ) )  -> 
( ( ( A Yrm  N ) ^ 2 )  gcd  ( ( A Xrm  N ) ^ ( ( M  /  N )  -  1 ) ) )  =  1 )
113 coprmdvds 12655 . . . . . . . 8  |-  ( ( ( ( A Yrm  N ) ^ 2 )  e.  ZZ  /\  ( ( A Xrm  N ) ^ (
( M  /  N
)  -  1 ) )  e.  ZZ  /\  ( ( M  /  N )  x.  ( A Yrm 
N ) )  e.  ZZ )  ->  (
( ( ( A Yrm  N ) ^ 2 ) 
||  ( ( ( A Xrm  N ) ^ (
( M  /  N
)  -  1 ) )  x.  ( ( M  /  N )  x.  ( A Yrm  N ) ) )  /\  (
( ( A Yrm  N ) ^ 2 )  gcd  ( ( A Xrm  N ) ^ ( ( M  /  N )  - 
1 ) ) )  =  1 )  -> 
( ( A Yrm  N ) ^ 2 )  ||  ( ( M  /  N )  x.  ( A Yrm 
N ) ) ) )
114113imp 420 . . . . . . 7  |-  ( ( ( ( ( A Yrm  N ) ^ 2 )  e.  ZZ  /\  (
( A Xrm  N ) ^
( ( M  /  N )  -  1 ) )  e.  ZZ  /\  ( ( M  /  N )  x.  ( A Yrm 
N ) )  e.  ZZ )  /\  (
( ( A Yrm  N ) ^ 2 )  ||  ( ( ( A Xrm  N ) ^ ( ( M  /  N )  -  1 ) )  x.  ( ( M  /  N )  x.  ( A Yrm  N ) ) )  /\  ( ( ( A Yrm  N ) ^
2 )  gcd  (
( A Xrm  N ) ^
( ( M  /  N )  -  1 ) ) )  =  1 ) )  -> 
( ( A Yrm  N ) ^ 2 )  ||  ( ( M  /  N )  x.  ( A Yrm 
N ) ) )
11512, 44, 47, 102, 112, 114syl32anc 1195 . . . . . 6  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  M  e.  NN  /\  N  e.  NN )  /\  (
( A Yrm  N ) ^
2 )  ||  ( A Yrm 
M ) )  -> 
( ( A Yrm  N ) ^ 2 )  ||  ( ( M  /  N )  x.  ( A Yrm 
N ) ) )
1169, 115eqbrtrrd 3942 . . . . 5  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  M  e.  NN  /\  N  e.  NN )  /\  (
( A Yrm  N ) ^
2 )  ||  ( A Yrm 
M ) )  -> 
( ( A Yrm  N )  x.  ( A Yrm  N ) )  ||  ( ( M  /  N )  x.  ( A Yrm  N ) ) )
117 rmy0 26180 . . . . . . . . . . 11  |-  ( A  e.  ( ZZ>= `  2
)  ->  ( A Yrm  0 )  =  0 )
1181173ad2ant1 981 . . . . . . . . . 10  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  M  e.  NN  /\  N  e.  NN )  ->  ( A Yrm  0 )  =  0 )
119 nngt0 9655 . . . . . . . . . . . 12  |-  ( N  e.  NN  ->  0  <  N )
1201193ad2ant3 983 . . . . . . . . . . 11  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  M  e.  NN  /\  N  e.  NN )  ->  0  <  N )
121 0z 9914 . . . . . . . . . . . . 13  |-  0  e.  ZZ
122121a1i 12 . . . . . . . . . . . 12  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  M  e.  NN  /\  N  e.  NN )  ->  0  e.  ZZ )
123 ltrmy 26205 . . . . . . . . . . . 12  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  0  e.  ZZ  /\  N  e.  ZZ )  ->  (
0  <  N  <->  ( A Yrm  0 )  <  ( A Yrm  N ) ) )
1241, 122, 3, 123syl3anc 1187 . . . . . . . . . . 11  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  M  e.  NN  /\  N  e.  NN )  ->  (
0  <  N  <->  ( A Yrm  0 )  <  ( A Yrm  N ) ) )
125120, 124mpbid 203 . . . . . . . . . 10  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  M  e.  NN  /\  N  e.  NN )  ->  ( A Yrm  0 )  <  ( A Yrm 
N ) )
126118, 125eqbrtrrd 3942 . . . . . . . . 9  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  M  e.  NN  /\  N  e.  NN )  ->  0  <  ( A Yrm  N ) )
127 elnnz 9913 . . . . . . . . 9  |-  ( ( A Yrm  N )  e.  NN  <->  ( ( A Yrm  N )  e.  ZZ  /\  0  < 
( A Yrm  N ) ) )
1286, 126, 127sylanbrc 648 . . . . . . . 8  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  M  e.  NN  /\  N  e.  NN )  ->  ( A Yrm 
N )  e.  NN )
129 nnne0 9658 . . . . . . . 8  |-  ( ( A Yrm  N )  e.  NN  ->  ( A Yrm  N )  =/=  0 )
130128, 129syl 17 . . . . . . 7  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  M  e.  NN  /\  N  e.  NN )  ->  ( A Yrm 
N )  =/=  0
)
131130adantr 453 . . . . . 6  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  M  e.  NN  /\  N  e.  NN )  /\  (
( A Yrm  N ) ^
2 )  ||  ( A Yrm 
M ) )  -> 
( A Yrm  N )  =/=  0 )
132 dvdsmulcr 12432 . . . . . 6  |-  ( ( ( A Yrm  N )  e.  ZZ  /\  ( M  /  N )  e.  ZZ  /\  ( ( A Yrm  N )  e.  ZZ  /\  ( A Yrm  N )  =/=  0 ) )  -> 
( ( ( A Yrm  N )  x.  ( A Yrm  N ) )  ||  (
( M  /  N
)  x.  ( A Yrm  N ) )  <->  ( A Yrm  N
)  ||  ( M  /  N ) ) )
13346, 45, 46, 131, 132syl112anc 1191 . . . . 5  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  M  e.  NN  /\  N  e.  NN )  /\  (
( A Yrm  N ) ^
2 )  ||  ( A Yrm 
M ) )  -> 
( ( ( A Yrm  N )  x.  ( A Yrm  N ) )  ||  (
( M  /  N
)  x.  ( A Yrm  N ) )  <->  ( A Yrm  N
)  ||  ( M  /  N ) ) )
134116, 133mpbid 203 . . . 4  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  M  e.  NN  /\  N  e.  NN )  /\  (
( A Yrm  N ) ^
2 )  ||  ( A Yrm 
M ) )  -> 
( A Yrm  N )  ||  ( M  /  N
) )
13554adantr 453 . . . . 5  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  M  e.  NN  /\  N  e.  NN )  /\  (
( A Yrm  N ) ^
2 )  ||  ( A Yrm 
M ) )  ->  N  =/=  0 )
136 dvdscmulr 12431 . . . . 5  |-  ( ( ( A Yrm  N )  e.  ZZ  /\  ( M  /  N )  e.  ZZ  /\  ( N  e.  ZZ  /\  N  =/=  0 ) )  -> 
( ( N  x.  ( A Yrm  N ) ) 
||  ( N  x.  ( M  /  N
) )  <->  ( A Yrm  N
)  ||  ( M  /  N ) ) )
13746, 45, 31, 135, 136syl112anc 1191 . . . 4  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  M  e.  NN  /\  N  e.  NN )  /\  (
( A Yrm  N ) ^
2 )  ||  ( A Yrm 
M ) )  -> 
( ( N  x.  ( A Yrm  N ) ) 
||  ( N  x.  ( M  /  N
) )  <->  ( A Yrm  N
)  ||  ( M  /  N ) ) )
138134, 137mpbird 225 . . 3  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  M  e.  NN  /\  N  e.  NN )  /\  (
( A Yrm  N ) ^
2 )  ||  ( A Yrm 
M ) )  -> 
( N  x.  ( A Yrm 
N ) )  ||  ( N  x.  ( M  /  N ) ) )
139138, 89breqtrd 3944 . 2  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  M  e.  NN  /\  N  e.  NN )  /\  (
( A Yrm  N ) ^
2 )  ||  ( A Yrm 
M ) )  -> 
( N  x.  ( A Yrm 
N ) )  ||  M )
14011adantr 453 . . 3  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  M  e.  NN  /\  N  e.  NN )  /\  ( N  x.  ( A Yrm  N
) )  ||  M
)  ->  ( ( A Yrm 
N ) ^ 2 )  e.  ZZ )
1413, 6zmulcld 10002 . . . . 5  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  M  e.  NN  /\  N  e.  NN )  ->  ( N  x.  ( A Yrm  N
) )  e.  ZZ )
1424fovcl 5801 . . . . 5  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  ( N  x.  ( A Yrm  N
) )  e.  ZZ )  ->  ( A Yrm  ( N  x.  ( A Yrm  N ) ) )  e.  ZZ )
1431, 141, 142syl2anc 645 . . . 4  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  M  e.  NN  /\  N  e.  NN )  ->  ( A Yrm  ( N  x.  ( A Yrm 
N ) ) )  e.  ZZ )
144143adantr 453 . . 3  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  M  e.  NN  /\  N  e.  NN )  /\  ( N  x.  ( A Yrm  N
) )  ||  M
)  ->  ( A Yrm  ( N  x.  ( A Yrm  N ) ) )  e.  ZZ )
14525adantr 453 . . 3  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  M  e.  NN  /\  N  e.  NN )  /\  ( N  x.  ( A Yrm  N
) )  ||  M
)  ->  ( A Yrm  M
)  e.  ZZ )
146 nnm1nn0 9884 . . . . . . . . 9  |-  ( ( A Yrm  N )  e.  NN  ->  ( ( A Yrm  N )  -  1 )  e. 
NN0 )
147128, 146syl 17 . . . . . . . 8  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  M  e.  NN  /\  N  e.  NN )  ->  (
( A Yrm  N )  - 
1 )  e.  NN0 )
148 zexpcl 10996 . . . . . . . 8  |-  ( ( ( A Xrm  N )  e.  ZZ  /\  ( ( A Yrm  N )  -  1 )  e.  NN0 )  ->  ( ( A Xrm  N ) ^ ( ( A Yrm  N )  -  1 ) )  e.  ZZ )
14916, 147, 148syl2anc 645 . . . . . . 7  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  M  e.  NN  /\  N  e.  NN )  ->  (
( A Xrm  N ) ^
( ( A Yrm  N )  -  1 ) )  e.  ZZ )
150 dvdsmul2 12425 . . . . . . 7  |-  ( ( ( ( A Xrm  N ) ^ ( ( A Yrm  N )  -  1 ) )  e.  ZZ  /\  ( ( A Yrm  N ) ^ 2 )  e.  ZZ )  ->  (
( A Yrm  N ) ^
2 )  ||  (
( ( A Xrm  N ) ^ ( ( A Yrm  N )  -  1 ) )  x.  ( ( A Yrm  N ) ^ 2 ) ) )
151149, 11, 150syl2anc 645 . . . . . 6  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  M  e.  NN  /\  N  e.  NN )  ->  (
( A Yrm  N ) ^
2 )  ||  (
( ( A Xrm  N ) ^ ( ( A Yrm  N )  -  1 ) )  x.  ( ( A Yrm  N ) ^ 2 ) ) )
15218oveq2d 5726 . . . . . . 7  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  M  e.  NN  /\  N  e.  NN )  ->  (
( ( A Xrm  N ) ^ ( ( A Yrm  N )  -  1 ) )  x.  ( ( A Yrm  N ) ^ 2 ) )  =  ( ( ( A Xrm  N ) ^ ( ( A Yrm  N )  -  1 ) )  x.  ( ( A Yrm  N )  x.  ( A Yrm 
N ) ) ) )
153149zcnd 9997 . . . . . . . 8  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  M  e.  NN  /\  N  e.  NN )  ->  (
( A Xrm  N ) ^
( ( A Yrm  N )  -  1 ) )  e.  CC )
154153, 7, 7mul12d 8901 . . . . . . 7  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  M  e.  NN  /\  N  e.  NN )  ->  (
( ( A Xrm  N ) ^ ( ( A Yrm  N )  -  1 ) )  x.  ( ( A Yrm  N )  x.  ( A Yrm 
N ) ) )  =  ( ( A Yrm  N )  x.  ( ( ( A Xrm  N ) ^
( ( A Yrm  N )  -  1 ) )  x.  ( A Yrm  N ) ) ) )
155152, 154eqtrd 2285 . . . . . 6  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  M  e.  NN  /\  N  e.  NN )  ->  (
( ( A Xrm  N ) ^ ( ( A Yrm  N )  -  1 ) )  x.  ( ( A Yrm  N ) ^ 2 ) )  =  ( ( A Yrm  N )  x.  ( ( ( A Xrm  N ) ^ ( ( A Yrm  N )  -  1 ) )  x.  ( A Yrm 
N ) ) ) )
156151, 155breqtrd 3944 . . . . 5  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  M  e.  NN  /\  N  e.  NN )  ->  (
( A Yrm  N ) ^
2 )  ||  (
( A Yrm  N )  x.  ( ( ( A Xrm  N ) ^ ( ( A Yrm  N )  -  1 ) )  x.  ( A Yrm 
N ) ) ) )
157149, 6zmulcld 10002 . . . . . . 7  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  M  e.  NN  /\  N  e.  NN )  ->  (
( ( A Xrm  N ) ^ ( ( A Yrm  N )  -  1 ) )  x.  ( A Yrm  N ) )  e.  ZZ )
1586, 157zmulcld 10002 . . . . . 6  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  M  e.  NN  /\  N  e.  NN )  ->  (
( A Yrm  N )  x.  ( ( ( A Xrm  N ) ^ ( ( A Yrm  N )  -  1 ) )  x.  ( A Yrm 
N ) ) )  e.  ZZ )
159143, 158zsubcld 10001 . . . . . . 7  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  M  e.  NN  /\  N  e.  NN )  ->  (
( A Yrm  ( N  x.  ( A Yrm  N ) ) )  -  ( ( A Yrm  N )  x.  (
( ( A Xrm  N ) ^ ( ( A Yrm  N )  -  1 ) )  x.  ( A Yrm  N ) ) ) )  e.  ZZ )
160 jm2.23 26255 . . . . . . . 8  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  N  e.  ZZ  /\  ( A Yrm  N )  e.  NN )  ->  ( ( A Yrm  N ) ^ 3 ) 
||  ( ( A Yrm  ( N  x.  ( A Yrm  N ) ) )  -  ( ( A Yrm  N )  x.  ( ( ( A Xrm  N ) ^ (
( A Yrm  N )  - 
1 ) )  x.  ( A Yrm  N ) ) ) ) )
1611, 3, 128, 160syl3anc 1187 . . . . . . 7  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  M  e.  NN  /\  N  e.  NN )  ->  (
( A Yrm  N ) ^
3 )  ||  (
( A Yrm  ( N  x.  ( A Yrm  N ) ) )  -  ( ( A Yrm  N )  x.  (
( ( A Xrm  N ) ^ ( ( A Yrm  N )  -  1 ) )  x.  ( A Yrm  N ) ) ) ) )
162 dvdstr 12436 . . . . . . . 8  |-  ( ( ( ( A Yrm  N ) ^ 2 )  e.  ZZ  /\  ( ( A Yrm  N ) ^ 3 )  e.  ZZ  /\  ( ( A Yrm  ( N  x.  ( A Yrm  N ) ) )  -  (
( A Yrm  N )  x.  ( ( ( A Xrm  N ) ^ ( ( A Yrm  N )  -  1 ) )  x.  ( A Yrm 
N ) ) ) )  e.  ZZ )  ->  ( ( ( ( A Yrm  N ) ^
2 )  ||  (
( A Yrm  N ) ^
3 )  /\  (
( A Yrm  N ) ^
3 )  ||  (
( A Yrm  ( N  x.  ( A Yrm  N ) ) )  -  ( ( A Yrm  N )  x.  (
( ( A Xrm  N ) ^ ( ( A Yrm  N )  -  1 ) )  x.  ( A Yrm  N ) ) ) ) )  ->  ( ( A Yrm 
N ) ^ 2 )  ||  ( ( A Yrm  ( N  x.  ( A Yrm 
N ) ) )  -  ( ( A Yrm  N )  x.  ( ( ( A Xrm  N ) ^
( ( A Yrm  N )  -  1 ) )  x.  ( A Yrm  N ) ) ) ) ) )
163162imp 420 . . . . . . 7  |-  ( ( ( ( ( A Yrm  N ) ^ 2 )  e.  ZZ  /\  (
( A Yrm  N ) ^
3 )  e.  ZZ  /\  ( ( A Yrm  ( N  x.  ( A Yrm  N ) ) )  -  (
( A Yrm  N )  x.  ( ( ( A Xrm  N ) ^ ( ( A Yrm  N )  -  1 ) )  x.  ( A Yrm 
N ) ) ) )  e.  ZZ )  /\  ( ( ( A Yrm  N ) ^ 2 )  ||  ( ( A Yrm  N ) ^ 3 )  /\  ( ( A Yrm  N ) ^ 3 )  ||  ( ( A Yrm  ( N  x.  ( A Yrm 
N ) ) )  -  ( ( A Yrm  N )  x.  ( ( ( A Xrm  N ) ^
( ( A Yrm  N )  -  1 ) )  x.  ( A Yrm  N ) ) ) ) ) )  ->  ( ( A Yrm 
N ) ^ 2 )  ||  ( ( A Yrm  ( N  x.  ( A Yrm 
N ) ) )  -  ( ( A Yrm  N )  x.  ( ( ( A Xrm  N ) ^
( ( A Yrm  N )  -  1 ) )  x.  ( A Yrm  N ) ) ) ) )
16411, 65, 159, 79, 161, 163syl32anc 1195 . . . . . 6  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  M  e.  NN  /\  N  e.  NN )  ->  (
( A Yrm  N ) ^
2 )  ||  (
( A Yrm  ( N  x.  ( A Yrm  N ) ) )  -  ( ( A Yrm  N )  x.  (
( ( A Xrm  N ) ^ ( ( A Yrm  N )  -  1 ) )  x.  ( A Yrm  N ) ) ) ) )
165 dvdssub2 12440 . . . . . 6  |-  ( ( ( ( ( A Yrm  N ) ^ 2 )  e.  ZZ  /\  ( A Yrm  ( N  x.  ( A Yrm 
N ) ) )  e.  ZZ  /\  (
( A Yrm  N )  x.  ( ( ( A Xrm  N ) ^ ( ( A Yrm  N )  -  1 ) )  x.  ( A Yrm 
N ) ) )  e.  ZZ )  /\  ( ( A Yrm  N ) ^ 2 )  ||  ( ( A Yrm  ( N  x.  ( A Yrm  N ) ) )  -  (
( A Yrm  N )  x.  ( ( ( A Xrm  N ) ^ ( ( A Yrm  N )  -  1 ) )  x.  ( A Yrm 
N ) ) ) ) )  ->  (
( ( A Yrm  N ) ^ 2 )  ||  ( A Yrm  ( N  x.  ( A Yrm  N ) ) )  <->  ( ( A Yrm  N ) ^ 2 ) 
||  ( ( A Yrm  N )  x.  ( ( ( A Xrm  N ) ^
( ( A Yrm  N )  -  1 ) )  x.  ( A Yrm  N ) ) ) ) )
16611, 143, 158, 164, 165syl31anc 1190 . . . . 5  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  M  e.  NN  /\  N  e.  NN )  ->  (
( ( A Yrm  N ) ^ 2 )  ||  ( A Yrm  ( N  x.  ( A Yrm  N ) ) )  <->  ( ( A Yrm  N ) ^ 2 ) 
||  ( ( A Yrm  N )  x.  ( ( ( A Xrm  N ) ^
( ( A Yrm  N )  -  1 ) )  x.  ( A Yrm  N ) ) ) ) )
167156, 166mpbird 225 . . . 4  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  M  e.  NN  /\  N  e.  NN )  ->  (
( A Yrm  N ) ^
2 )  ||  ( A Yrm  ( N  x.  ( A Yrm 
N ) ) ) )
168167adantr 453 . . 3  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  M  e.  NN  /\  N  e.  NN )  /\  ( N  x.  ( A Yrm  N
) )  ||  M
)  ->  ( ( A Yrm 
N ) ^ 2 )  ||  ( A Yrm  ( N  x.  ( A Yrm  N ) ) ) )
169 simpr 449 . . . 4  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  M  e.  NN  /\  N  e.  NN )  /\  ( N  x.  ( A Yrm  N
) )  ||  M
)  ->  ( N  x.  ( A Yrm  N ) ) 
||  M )
170 simpl1 963 . . . . 5  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  M  e.  NN  /\  N  e.  NN )  /\  ( N  x.  ( A Yrm  N
) )  ||  M
)  ->  A  e.  ( ZZ>= `  2 )
)
171141adantr 453 . . . . 5  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  M  e.  NN  /\  N  e.  NN )  /\  ( N  x.  ( A Yrm  N
) )  ||  M
)  ->  ( N  x.  ( A Yrm  N ) )  e.  ZZ )
17223adantr 453 . . . . 5  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  M  e.  NN  /\  N  e.  NN )  /\  ( N  x.  ( A Yrm  N
) )  ||  M
)  ->  M  e.  ZZ )
173 jm2.19 26252 . . . . 5  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  ( N  x.  ( A Yrm  N
) )  e.  ZZ  /\  M  e.  ZZ )  ->  ( ( N  x.  ( A Yrm  N ) )  ||  M  <->  ( A Yrm  ( N  x.  ( A Yrm  N ) ) )  ||  ( A Yrm  M ) ) )
174170, 171, 172, 173syl3anc 1187 . . . 4  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  M  e.  NN  /\  N  e.  NN )  /\  ( N  x.  ( A Yrm  N
) )  ||  M
)  ->  ( ( N  x.  ( A Yrm  N
) )  ||  M  <->  ( A Yrm  ( N  x.  ( A Yrm 
N ) ) ) 
||  ( A Yrm  M ) ) )
175169, 174mpbid 203 . . 3  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  M  e.  NN  /\  N  e.  NN )  /\  ( N  x.  ( A Yrm  N
) )  ||  M
)  ->  ( A Yrm  ( N  x.  ( A Yrm  N ) ) )  ||  ( A Yrm  M ) )
176 dvdstr 12436 . . . 4  |-  ( ( ( ( A Yrm  N ) ^ 2 )  e.  ZZ  /\  ( A Yrm  ( N  x.  ( A Yrm  N ) ) )  e.  ZZ  /\  ( A Yrm  M )  e.  ZZ )  ->  ( ( ( ( A Yrm  N ) ^
2 )  ||  ( A Yrm  ( N  x.  ( A Yrm 
N ) ) )  /\  ( A Yrm  ( N  x.  ( A Yrm  N ) ) )  ||  ( A Yrm 
M ) )  -> 
( ( A Yrm  N ) ^ 2 )  ||  ( A Yrm  M ) ) )
177176imp 420 . . 3  |-  ( ( ( ( ( A Yrm  N ) ^ 2 )  e.  ZZ  /\  ( A Yrm  ( N  x.  ( A Yrm 
N ) ) )  e.  ZZ  /\  ( A Yrm 
M )  e.  ZZ )  /\  ( ( ( A Yrm  N ) ^ 2 )  ||  ( A Yrm  ( N  x.  ( A Yrm  N ) ) )  /\  ( A Yrm  ( N  x.  ( A Yrm  N ) ) )  ||  ( A Yrm  M ) ) )  -> 
( ( A Yrm  N ) ^ 2 )  ||  ( A Yrm  M ) )
178140, 144, 145, 168, 175, 177syl32anc 1195 . 2  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  M  e.  NN  /\  N  e.  NN )  /\  ( N  x.  ( A Yrm  N
) )  ||  M
)  ->  ( ( A Yrm 
N ) ^ 2 )  ||  ( A Yrm  M ) )
179139, 178impbida 808 1  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  M  e.  NN  /\  N  e.  NN )  ->  (
( ( A Yrm  N ) ^ 2 )  ||  ( A Yrm  M )  <->  ( N  x.  ( A Yrm  N ) ) 
||  M ) )
Colors of variables: wff set class
Syntax hints:    -> wi 6    <-> wb 178    /\ wa 360    /\ w3a 939    = wceq 1619    e. wcel 1621    =/= wne 2412   class class class wbr 3920   ` cfv 4592  (class class class)co 5710   CCcc 8615   0cc0 8617   1c1 8618    x. cmul 8622    < clt 8747    <_ cle 8748    - cmin 8917    / cdiv 9303   NNcn 9626   2c2 9675   3c3 9676   NN0cn0 9844   ZZcz 9903   ZZ>=cuz 10109   ^cexp 10982    || cdivides 12405    gcd cgcd 12559   Xrm crmx 26151   Yrm crmy 26152
This theorem is referenced by:  jm2.27a  26264  jm2.27c  26266
This theorem was proved from axioms:  ax-1 7  ax-2 8  ax-3 9  ax-mp 10  ax-5 1533  ax-6 1534  ax-7 1535  ax-gen 1536  ax-8 1623  ax-11 1624  ax-13 1625  ax-14 1626  ax-17 1628  ax-12o 1664  ax-10 1678  ax-9 1684  ax-4 1692  ax-16 1926  ax-ext 2234  ax-rep 4028  ax-sep 4038  ax-nul 4046  ax-pow 4082  ax-pr 4108  ax-un 4403  ax-inf2 7226  ax-cnex 8673  ax-resscn 8674  ax-1cn 8675  ax-icn 8676  ax-addcl 8677  ax-addrcl 8678  ax-mulcl 8679  ax-mulrcl 8680  ax-mulcom 8681  ax-addass 8682  ax-mulass 8683  ax-distr 8684  ax-i2m1 8685  ax-1ne0 8686  ax-1rid 8687  ax-rnegex 8688  ax-rrecex 8689  ax-cnre 8690  ax-pre-lttri 8691  ax-pre-lttrn 8692  ax-pre-ltadd 8693  ax-pre-mulgt0 8694  ax-pre-sup 8695  ax-addf 8696  ax-mulf 8697
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3or 940  df-3an 941  df-tru 1315  df-ex 1538  df-nf 1540  df-sb 1883  df-eu 2118  df-mo 2119  df-clab 2240  df-cleq 2246  df-clel 2249  df-nfc 2374  df-ne 2414  df-nel 2415  df-ral 2513  df-rex 2514  df-reu 2515  df-rab 2516  df-v 2729  df-sbc 2922  df-csb 3010  df-dif 3081  df-un 3083  df-in 3085  df-ss 3089  df-pss 3091  df-nul 3363  df-if 3471  df-pw 3532  df-sn 3550  df-pr 3551  df-tp 3552  df-op 3553  df-uni 3728  df-int 3761  df-iun 3805  df-iin 3806  df-br 3921  df-opab 3975  df-mpt 3976  df-tr 4011  df-eprel 4198  df-id 4202  df-po 4207  df-so 4208  df-fr 4245  df-se 4246  df-we 4247  df-ord 4288  df-on 4289  df-lim 4290  df-suc 4291  df-om 4548  df-xp 4594  df-rel 4595  df-cnv 4596  df-co 4597  df-dm 4598  df-rn 4599  df-res 4600  df-ima 4601  df-fun 4602  df-fn 4603  df-f 4604  df-f1 4605  df-fo 4606  df-f1o 4607  df-fv 4608  df-isom 4609  df-ov 5713  df-oprab 5714  df-mpt2 5715  df-of 5930  df-1st 5974  df-2nd 5975  df-iota 6143  df-riota 6190  df-recs 6274  df-rdg 6309  df-1o 6365  df-2o 6366  df-oadd 6369  df-omul 6370  df-er 6546  df-map 6660  df-pm 6661  df-ixp 6704  df-en 6750  df-dom 6751  df-sdom 6752  df-fin 6753  df-fi 7049  df-sup 7078  df-oi 7109  df-card 7456  df-acn 7459  df-cda 7678  df-pnf 8749  df-mnf 8750  df-xr 8751  df-ltxr 8752  df-le 8753  df-sub 8919  df-neg 8920  df-div 9304  df-n 9627  df-2 9684  df-3 9685  df-4 9686  df-5 9687  df-6 9688  df-7 9689  df-8 9690  df-9 9691  df-10 9692  df-n0 9845  df-z 9904  df-dec 10004  df-uz 10110  df-q 10196  df-rp 10234  df-xneg 10331  df-xadd 10332  df-xmul 10333  df-ioo 10538  df-ioc 10539  df-ico 10540  df-icc 10541  df-fz 10661  df-fzo 10749  df-fl 10803  df-mod 10852  df-seq 10925  df-exp 10983  df-fac 11167  df-bc 11194  df-hash 11216  df-shft 11439  df-cj 11461  df-re 11462  df-im 11463  df-sqr 11597  df-abs 11598  df-limsup 11822  df-clim 11839  df-rlim 11840  df-sum 12036  df-ef 12223  df-sin 12225  df-cos 12226  df-pi 12228  df-divides 12406  df-gcd 12560  df-prime 12633  df-numer 12680  df-denom 12681  df-struct 13024  df-ndx 13025  df-slot 13026  df-base 13027  df-sets 13028  df-ress 13029  df-plusg 13095  df-mulr 13096  df-starv 13097  df-sca 13098  df-vsca 13099  df-tset 13101  df-ple 13102  df-ds 13104  df-hom 13106  df-cco 13107  df-rest 13201  df-topn 13202  df-topgen 13218  df-pt 13219  df-prds 13222  df-xrs 13277  df-0g 13278  df-gsum 13279  df-qtop 13284  df-imas 13285  df-xps 13287  df-mre 13361  df-mrc 13362  df-acs 13363  df-mnd 14202  df-submnd 14251  df-mulg 14327  df-cntz 14628  df-cmn 14926  df-xmet 16205  df-met 16206  df-bl 16207  df-mopn 16208  df-cnfld 16210  df-top 16468  df-bases 16470  df-topon 16471  df-topsp 16472  df-cld 16588  df-ntr 16589  df-cls 16590  df-nei 16667  df-lp 16700  df-perf 16701  df-cn 16789  df-cnp 16790  df-haus 16875  df-tx 17089  df-hmeo 17278  df-fbas 17352  df-fg 17353  df-fil 17373  df-fm 17465  df-flim 17466  df-flf 17467  df-xms 17717  df-ms 17718  df-tms 17719  df-cncf 18214  df-limc 19048  df-dv 19049  df-log 19746  df-squarenn 26092  df-pell1qr 26093  df-pell14qr 26094  df-pell1234qr 26095  df-pellfund 26096  df-rmx 26153  df-rmy 26154
  Copyright terms: Public domain W3C validator