Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  iunss2 Unicode version

Theorem iunss2 3845
 Description: A subclass condition on the members of two indexed classes and that implies a subclass relation on their indexed unions. Generalization of Proposition 8.6 of [TakeutiZaring] p. 59. Compare uniss2 3756. (Contributed by NM, 9-Dec-2004.)
Assertion
Ref Expression
iunss2
Distinct variable groups:   ,   ,   ,   ,
Allowed substitution hints:   (,)   ()   ()   ()

Proof of Theorem iunss2
StepHypRef Expression
1 ssiun 3842 . . 3
21ralimi 2580 . 2
3 iunss 3841 . 2
42, 3sylibr 205 1
 Colors of variables: wff set class Syntax hints:   wi 6  wral 2509  wrex 2510   wss 3078  ciun 3803 This theorem is referenced by:  iunxdif2  3848  oaass  6445  odi  6463  omass  6464  oelim2  6479 This theorem was proved from axioms:  ax-1 7  ax-2 8  ax-3 9  ax-mp 10  ax-5 1533  ax-6 1534  ax-7 1535  ax-gen 1536  ax-8 1623  ax-11 1624  ax-17 1628  ax-12o 1664  ax-10 1678  ax-9 1684  ax-4 1692  ax-16 1926  ax-ext 2234 This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-tru 1315  df-ex 1538  df-nf 1540  df-sb 1883  df-clab 2240  df-cleq 2246  df-clel 2249  df-nfc 2374  df-ral 2513  df-rex 2514  df-v 2729  df-in 3085  df-ss 3089  df-iun 3805
 Copyright terms: Public domain W3C validator