Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  iunin1 Unicode version

Theorem iunin1 3865
 Description: Indexed union of intersection. Generalization of half of theorem "Distributive laws" in [Enderton] p. 30. Use uniiun 3853 to recover Enderton's theorem. (Contributed by Mario Carneiro, 30-Aug-2015.)
Assertion
Ref Expression
iunin1
Distinct variable group:   ,
Allowed substitution hints:   ()   ()

Proof of Theorem iunin1
StepHypRef Expression
1 iunin2 3864 . 2
2 incom 3269 . . . 4
32a1i 12 . . 3
43iuneq2i 3821 . 2
5 incom 3269 . 2
61, 4, 53eqtr4i 2283 1
 Colors of variables: wff set class Syntax hints:   wceq 1619   wcel 1621   cin 3077  ciun 3803 This theorem is referenced by:  2iunin  3868  tgrest  16722  metnrmlem3  18197  limciun  19076  sstotbnd2  25664 This theorem was proved from axioms:  ax-1 7  ax-2 8  ax-3 9  ax-mp 10  ax-5 1533  ax-6 1534  ax-7 1535  ax-gen 1536  ax-8 1623  ax-11 1624  ax-17 1628  ax-12o 1664  ax-10 1678  ax-9 1684  ax-4 1692  ax-16 1926  ax-ext 2234 This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-tru 1315  df-ex 1538  df-nf 1540  df-sb 1883  df-clab 2240  df-cleq 2246  df-clel 2249  df-nfc 2374  df-ral 2513  df-rex 2514  df-v 2729  df-in 3085  df-ss 3089  df-iun 3805
 Copyright terms: Public domain W3C validator