MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  iunctb Unicode version

Theorem iunctb 8076
Description: The countable union of countable sets is countable (indexed union version of unictb 8077). (Contributed by Mario Carneiro, 18-Jan-2014.)
Assertion
Ref Expression
iunctb  |-  ( ( A  ~<_  om  /\  A. x  e.  A  B  ~<_  om )  ->  U_ x  e.  A  B  ~<_  om )
Distinct variable group:    x, A
Allowed substitution hint:    B( x)

Proof of Theorem iunctb
StepHypRef Expression
1 eqid 2253 . . 3  |-  U_ x  e.  A  ( {
x }  X.  B
)  =  U_ x  e.  A  ( {
x }  X.  B
)
2 simpl 445 . . . 4  |-  ( ( A  ~<_  om  /\  A. x  e.  A  B  ~<_  om )  ->  A  ~<_  om )
3 reldom 6755 . . . . . . . 8  |-  Rel  ~<_
43brrelexi 4636 . . . . . . 7  |-  ( A  ~<_  om  ->  A  e.  _V )
54adantr 453 . . . . . 6  |-  ( ( A  ~<_  om  /\  A. x  e.  A  B  ~<_  om )  ->  A  e.  _V )
6 ovex 5735 . . . . . . 7  |-  ( om 
^m  B )  e. 
_V
76rgenw 2572 . . . . . 6  |-  A. x  e.  A  ( om  ^m  B )  e.  _V
8 iunexg 5619 . . . . . 6  |-  ( ( A  e.  _V  /\  A. x  e.  A  ( om  ^m  B )  e.  _V )  ->  U_ x  e.  A  ( om  ^m  B )  e.  _V )
95, 7, 8sylancl 646 . . . . 5  |-  ( ( A  ~<_  om  /\  A. x  e.  A  B  ~<_  om )  ->  U_ x  e.  A  ( om  ^m  B )  e.  _V )
10 acncc 7950 . . . . 5  |- AC  om  =  _V
119, 10syl6eleqr 2344 . . . 4  |-  ( ( A  ~<_  om  /\  A. x  e.  A  B  ~<_  om )  ->  U_ x  e.  A  ( om  ^m  B )  e. AC  om )
12 acndom 7562 . . . 4  |-  ( A  ~<_  om  ->  ( U_ x  e.  A  ( om  ^m  B )  e. AC  om 
->  U_ x  e.  A  ( om  ^m  B )  e. AC  A ) )
132, 11, 12sylc 58 . . 3  |-  ( ( A  ~<_  om  /\  A. x  e.  A  B  ~<_  om )  ->  U_ x  e.  A  ( om  ^m  B )  e. AC  A )
14 simpr 449 . . 3  |-  ( ( A  ~<_  om  /\  A. x  e.  A  B  ~<_  om )  ->  A. x  e.  A  B  ~<_  om )
15 omex 7228 . . . . . 6  |-  om  e.  _V
16 xpdom1g 6844 . . . . . 6  |-  ( ( om  e.  _V  /\  A  ~<_  om )  ->  ( A  X.  om )  ~<_  ( om  X.  om )
)
1715, 2, 16sylancr 647 . . . . 5  |-  ( ( A  ~<_  om  /\  A. x  e.  A  B  ~<_  om )  ->  ( A  X.  om )  ~<_  ( om  X.  om ) )
18 xpomen 7527 . . . . 5  |-  ( om 
X.  om )  ~~  om
19 domentr 6805 . . . . 5  |-  ( ( ( A  X.  om )  ~<_  ( om  X.  om )  /\  ( om  X.  om )  ~~  om )  ->  ( A  X.  om )  ~<_  om )
2017, 18, 19sylancl 646 . . . 4  |-  ( ( A  ~<_  om  /\  A. x  e.  A  B  ~<_  om )  ->  ( A  X.  om )  ~<_  om )
213brrelexi 4636 . . . . . . 7  |-  ( B  ~<_  om  ->  B  e.  _V )
2221ralimi 2580 . . . . . 6  |-  ( A. x  e.  A  B  ~<_  om  ->  A. x  e.  A  B  e.  _V )
23 iunexg 5619 . . . . . 6  |-  ( ( A  e.  _V  /\  A. x  e.  A  B  e.  _V )  ->  U_ x  e.  A  B  e.  _V )
244, 22, 23syl2an 465 . . . . 5  |-  ( ( A  ~<_  om  /\  A. x  e.  A  B  ~<_  om )  ->  U_ x  e.  A  B  e.  _V )
25 omelon 7231 . . . . . 6  |-  om  e.  On
26 onenon 7466 . . . . . 6  |-  ( om  e.  On  ->  om  e.  dom  card )
2725, 26ax-mp 10 . . . . 5  |-  om  e.  dom  card
28 numacn 7560 . . . . 5  |-  ( U_ x  e.  A  B  e.  _V  ->  ( om  e.  dom  card  ->  om  e. AC  U_ x  e.  A  B
) )
2924, 27, 28ee10 1372 . . . 4  |-  ( ( A  ~<_  om  /\  A. x  e.  A  B  ~<_  om )  ->  om  e. AC  U_ x  e.  A  B )
30 acndom2 7565 . . . 4  |-  ( ( A  X.  om )  ~<_  om  ->  ( om  e. AC  U_ x  e.  A  B  ->  ( A  X.  om )  e. AC  U_ x  e.  A  B ) )
3120, 29, 30sylc 58 . . 3  |-  ( ( A  ~<_  om  /\  A. x  e.  A  B  ~<_  om )  ->  ( A  X.  om )  e. AC  U_ x  e.  A  B )
321, 13, 14, 31iundomg 8047 . 2  |-  ( ( A  ~<_  om  /\  A. x  e.  A  B  ~<_  om )  ->  U_ x  e.  A  B  ~<_  ( A  X.  om ) )
33 domtr 6799 . 2  |-  ( (
U_ x  e.  A  B  ~<_  ( A  X.  om )  /\  ( A  X.  om )  ~<_  om )  ->  U_ x  e.  A  B  ~<_  om )
3432, 20, 33syl2anc 645 1  |-  ( ( A  ~<_  om  /\  A. x  e.  A  B  ~<_  om )  ->  U_ x  e.  A  B  ~<_  om )
Colors of variables: wff set class
Syntax hints:    -> wi 6    /\ wa 360    e. wcel 1621   A.wral 2509   _Vcvv 2727   {csn 3544   U_ciun 3803   class class class wbr 3920   Oncon0 4285   omcom 4547    X. cxp 4578   dom cdm 4580  (class class class)co 5710    ^m cmap 6658    ~~ cen 6746    ~<_ cdom 6747   cardccrd 7452  AC wacn 7455
This theorem is referenced by:  unictb  8077  heiborlem3  25703
This theorem was proved from axioms:  ax-1 7  ax-2 8  ax-3 9  ax-mp 10  ax-5 1533  ax-6 1534  ax-7 1535  ax-gen 1536  ax-8 1623  ax-11 1624  ax-13 1625  ax-14 1626  ax-17 1628  ax-12o 1664  ax-10 1678  ax-9 1684  ax-4 1692  ax-16 1926  ax-ext 2234  ax-rep 4028  ax-sep 4038  ax-nul 4046  ax-pow 4082  ax-pr 4108  ax-un 4403  ax-inf2 7226  ax-cc 7945
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3or 940  df-3an 941  df-tru 1315  df-ex 1538  df-nf 1540  df-sb 1883  df-eu 2118  df-mo 2119  df-clab 2240  df-cleq 2246  df-clel 2249  df-nfc 2374  df-ne 2414  df-ral 2513  df-rex 2514  df-reu 2515  df-rab 2516  df-v 2729  df-sbc 2922  df-csb 3010  df-dif 3081  df-un 3083  df-in 3085  df-ss 3089  df-pss 3091  df-nul 3363  df-if 3471  df-pw 3532  df-sn 3550  df-pr 3551  df-tp 3552  df-op 3553  df-uni 3728  df-int 3761  df-iun 3805  df-br 3921  df-opab 3975  df-mpt 3976  df-tr 4011  df-eprel 4198  df-id 4202  df-po 4207  df-so 4208  df-fr 4245  df-se 4246  df-we 4247  df-ord 4288  df-on 4289  df-lim 4290  df-suc 4291  df-om 4548  df-xp 4594  df-rel 4595  df-cnv 4596  df-co 4597  df-dm 4598  df-rn 4599  df-res 4600  df-ima 4601  df-fun 4602  df-fn 4603  df-f 4604  df-f1 4605  df-fo 4606  df-f1o 4607  df-fv 4608  df-isom 4609  df-ov 5713  df-oprab 5714  df-mpt2 5715  df-1st 5974  df-2nd 5975  df-iota 6143  df-riota 6190  df-recs 6274  df-rdg 6309  df-1o 6365  df-oadd 6369  df-er 6546  df-map 6660  df-en 6750  df-dom 6751  df-sdom 6752  df-fin 6753  df-oi 7109  df-card 7456  df-acn 7459
  Copyright terms: Public domain W3C validator