MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  isotr Unicode version

Theorem isotr 5685
Description: Composition (transitive) law for isomorphism. Proposition 6.30(3) of [TakeutiZaring] p. 33. (Contributed by NM, 27-Apr-2004.) (Proof shortened by Mario Carneiro, 5-Dec-2016.)
Assertion
Ref Expression
isotr  |-  ( ( H  Isom  R ,  S  ( A ,  B )  /\  G  Isom  S ,  T  ( B ,  C ) )  ->  ( G  o.  H )  Isom  R ,  T  ( A ,  C ) )

Proof of Theorem isotr
StepHypRef Expression
1 simpl 445 . . . 4  |-  ( ( G : B -1-1-onto-> C  /\  A. z  e.  B  A. w  e.  B  (
z S w  <->  ( G `  z ) T ( G `  w ) ) )  ->  G : B -1-1-onto-> C )
2 simpl 445 . . . 4  |-  ( ( H : A -1-1-onto-> B  /\  A. x  e.  A  A. y  e.  A  (
x R y  <->  ( H `  x ) S ( H `  y ) ) )  ->  H : A -1-1-onto-> B )
3 f1oco 5353 . . . 4  |-  ( ( G : B -1-1-onto-> C  /\  H : A -1-1-onto-> B )  ->  ( G  o.  H ) : A -1-1-onto-> C )
41, 2, 3syl2anr 466 . . 3  |-  ( ( ( H : A -1-1-onto-> B  /\  A. x  e.  A  A. y  e.  A  ( x R y  <-> 
( H `  x
) S ( H `
 y ) ) )  /\  ( G : B -1-1-onto-> C  /\  A. z  e.  B  A. w  e.  B  ( z S w  <->  ( G `  z ) T ( G `  w ) ) ) )  -> 
( G  o.  H
) : A -1-1-onto-> C )
5 f1of 5329 . . . . . . . . . . . 12  |-  ( H : A -1-1-onto-> B  ->  H : A
--> B )
65ad2antrr 709 . . . . . . . . . . 11  |-  ( ( ( H : A -1-1-onto-> B  /\  ( G : B -1-1-onto-> C  /\  A. z  e.  B  A. w  e.  B  ( z S w  <-> 
( G `  z
) T ( G `
 w ) ) ) )  /\  (
x  e.  A  /\  y  e.  A )
)  ->  H : A
--> B )
7 simprl 735 . . . . . . . . . . 11  |-  ( ( ( H : A -1-1-onto-> B  /\  ( G : B -1-1-onto-> C  /\  A. z  e.  B  A. w  e.  B  ( z S w  <-> 
( G `  z
) T ( G `
 w ) ) ) )  /\  (
x  e.  A  /\  y  e.  A )
)  ->  x  e.  A )
8 ffvelrn 5515 . . . . . . . . . . 11  |-  ( ( H : A --> B  /\  x  e.  A )  ->  ( H `  x
)  e.  B )
96, 7, 8syl2anc 645 . . . . . . . . . 10  |-  ( ( ( H : A -1-1-onto-> B  /\  ( G : B -1-1-onto-> C  /\  A. z  e.  B  A. w  e.  B  ( z S w  <-> 
( G `  z
) T ( G `
 w ) ) ) )  /\  (
x  e.  A  /\  y  e.  A )
)  ->  ( H `  x )  e.  B
)
10 simprr 736 . . . . . . . . . . 11  |-  ( ( ( H : A -1-1-onto-> B  /\  ( G : B -1-1-onto-> C  /\  A. z  e.  B  A. w  e.  B  ( z S w  <-> 
( G `  z
) T ( G `
 w ) ) ) )  /\  (
x  e.  A  /\  y  e.  A )
)  ->  y  e.  A )
11 ffvelrn 5515 . . . . . . . . . . 11  |-  ( ( H : A --> B  /\  y  e.  A )  ->  ( H `  y
)  e.  B )
126, 10, 11syl2anc 645 . . . . . . . . . 10  |-  ( ( ( H : A -1-1-onto-> B  /\  ( G : B -1-1-onto-> C  /\  A. z  e.  B  A. w  e.  B  ( z S w  <-> 
( G `  z
) T ( G `
 w ) ) ) )  /\  (
x  e.  A  /\  y  e.  A )
)  ->  ( H `  y )  e.  B
)
13 simplrr 740 . . . . . . . . . 10  |-  ( ( ( H : A -1-1-onto-> B  /\  ( G : B -1-1-onto-> C  /\  A. z  e.  B  A. w  e.  B  ( z S w  <-> 
( G `  z
) T ( G `
 w ) ) ) )  /\  (
x  e.  A  /\  y  e.  A )
)  ->  A. z  e.  B  A. w  e.  B  ( z S w  <->  ( G `  z ) T ( G `  w ) ) )
14 breq1 3923 . . . . . . . . . . . 12  |-  ( z  =  ( H `  x )  ->  (
z S w  <->  ( H `  x ) S w ) )
15 fveq2 5377 . . . . . . . . . . . . 13  |-  ( z  =  ( H `  x )  ->  ( G `  z )  =  ( G `  ( H `  x ) ) )
1615breq1d 3930 . . . . . . . . . . . 12  |-  ( z  =  ( H `  x )  ->  (
( G `  z
) T ( G `
 w )  <->  ( G `  ( H `  x
) ) T ( G `  w ) ) )
1714, 16bibi12d 314 . . . . . . . . . . 11  |-  ( z  =  ( H `  x )  ->  (
( z S w  <-> 
( G `  z
) T ( G `
 w ) )  <-> 
( ( H `  x ) S w  <-> 
( G `  ( H `  x )
) T ( G `
 w ) ) ) )
18 breq2 3924 . . . . . . . . . . . 12  |-  ( w  =  ( H `  y )  ->  (
( H `  x
) S w  <->  ( H `  x ) S ( H `  y ) ) )
19 fveq2 5377 . . . . . . . . . . . . 13  |-  ( w  =  ( H `  y )  ->  ( G `  w )  =  ( G `  ( H `  y ) ) )
2019breq2d 3932 . . . . . . . . . . . 12  |-  ( w  =  ( H `  y )  ->  (
( G `  ( H `  x )
) T ( G `
 w )  <->  ( G `  ( H `  x
) ) T ( G `  ( H `
 y ) ) ) )
2118, 20bibi12d 314 . . . . . . . . . . 11  |-  ( w  =  ( H `  y )  ->  (
( ( H `  x ) S w  <-> 
( G `  ( H `  x )
) T ( G `
 w ) )  <-> 
( ( H `  x ) S ( H `  y )  <-> 
( G `  ( H `  x )
) T ( G `
 ( H `  y ) ) ) ) )
2217, 21rcla42va 2828 . . . . . . . . . 10  |-  ( ( ( ( H `  x )  e.  B  /\  ( H `  y
)  e.  B )  /\  A. z  e.  B  A. w  e.  B  ( z S w  <->  ( G `  z ) T ( G `  w ) ) )  ->  (
( H `  x
) S ( H `
 y )  <->  ( G `  ( H `  x
) ) T ( G `  ( H `
 y ) ) ) )
239, 12, 13, 22syl21anc 1186 . . . . . . . . 9  |-  ( ( ( H : A -1-1-onto-> B  /\  ( G : B -1-1-onto-> C  /\  A. z  e.  B  A. w  e.  B  ( z S w  <-> 
( G `  z
) T ( G `
 w ) ) ) )  /\  (
x  e.  A  /\  y  e.  A )
)  ->  ( ( H `  x ) S ( H `  y )  <->  ( G `  ( H `  x
) ) T ( G `  ( H `
 y ) ) ) )
24 fvco3 5448 . . . . . . . . . . 11  |-  ( ( H : A --> B  /\  x  e.  A )  ->  ( ( G  o.  H ) `  x
)  =  ( G `
 ( H `  x ) ) )
256, 7, 24syl2anc 645 . . . . . . . . . 10  |-  ( ( ( H : A -1-1-onto-> B  /\  ( G : B -1-1-onto-> C  /\  A. z  e.  B  A. w  e.  B  ( z S w  <-> 
( G `  z
) T ( G `
 w ) ) ) )  /\  (
x  e.  A  /\  y  e.  A )
)  ->  ( ( G  o.  H ) `  x )  =  ( G `  ( H `
 x ) ) )
26 fvco3 5448 . . . . . . . . . . 11  |-  ( ( H : A --> B  /\  y  e.  A )  ->  ( ( G  o.  H ) `  y
)  =  ( G `
 ( H `  y ) ) )
276, 10, 26syl2anc 645 . . . . . . . . . 10  |-  ( ( ( H : A -1-1-onto-> B  /\  ( G : B -1-1-onto-> C  /\  A. z  e.  B  A. w  e.  B  ( z S w  <-> 
( G `  z
) T ( G `
 w ) ) ) )  /\  (
x  e.  A  /\  y  e.  A )
)  ->  ( ( G  o.  H ) `  y )  =  ( G `  ( H `
 y ) ) )
2825, 27breq12d 3933 . . . . . . . . 9  |-  ( ( ( H : A -1-1-onto-> B  /\  ( G : B -1-1-onto-> C  /\  A. z  e.  B  A. w  e.  B  ( z S w  <-> 
( G `  z
) T ( G `
 w ) ) ) )  /\  (
x  e.  A  /\  y  e.  A )
)  ->  ( (
( G  o.  H
) `  x ) T ( ( G  o.  H ) `  y )  <->  ( G `  ( H `  x
) ) T ( G `  ( H `
 y ) ) ) )
2923, 28bitr4d 249 . . . . . . . 8  |-  ( ( ( H : A -1-1-onto-> B  /\  ( G : B -1-1-onto-> C  /\  A. z  e.  B  A. w  e.  B  ( z S w  <-> 
( G `  z
) T ( G `
 w ) ) ) )  /\  (
x  e.  A  /\  y  e.  A )
)  ->  ( ( H `  x ) S ( H `  y )  <->  ( ( G  o.  H ) `  x ) T ( ( G  o.  H
) `  y )
) )
3029bibi2d 311 . . . . . . 7  |-  ( ( ( H : A -1-1-onto-> B  /\  ( G : B -1-1-onto-> C  /\  A. z  e.  B  A. w  e.  B  ( z S w  <-> 
( G `  z
) T ( G `
 w ) ) ) )  /\  (
x  e.  A  /\  y  e.  A )
)  ->  ( (
x R y  <->  ( H `  x ) S ( H `  y ) )  <->  ( x R y  <->  ( ( G  o.  H ) `  x ) T ( ( G  o.  H
) `  y )
) ) )
31302ralbidva 2545 . . . . . 6  |-  ( ( H : A -1-1-onto-> B  /\  ( G : B -1-1-onto-> C  /\  A. z  e.  B  A. w  e.  B  (
z S w  <->  ( G `  z ) T ( G `  w ) ) ) )  -> 
( A. x  e.  A  A. y  e.  A  ( x R y  <->  ( H `  x ) S ( H `  y ) )  <->  A. x  e.  A  A. y  e.  A  ( x R y  <-> 
( ( G  o.  H ) `  x
) T ( ( G  o.  H ) `
 y ) ) ) )
3231biimpd 200 . . . . 5  |-  ( ( H : A -1-1-onto-> B  /\  ( G : B -1-1-onto-> C  /\  A. z  e.  B  A. w  e.  B  (
z S w  <->  ( G `  z ) T ( G `  w ) ) ) )  -> 
( A. x  e.  A  A. y  e.  A  ( x R y  <->  ( H `  x ) S ( H `  y ) )  ->  A. x  e.  A  A. y  e.  A  ( x R y  <->  ( ( G  o.  H ) `  x ) T ( ( G  o.  H
) `  y )
) ) )
3332impancom 429 . . . 4  |-  ( ( H : A -1-1-onto-> B  /\  A. x  e.  A  A. y  e.  A  (
x R y  <->  ( H `  x ) S ( H `  y ) ) )  ->  (
( G : B -1-1-onto-> C  /\  A. z  e.  B  A. w  e.  B  ( z S w  <-> 
( G `  z
) T ( G `
 w ) ) )  ->  A. x  e.  A  A. y  e.  A  ( x R y  <->  ( ( G  o.  H ) `  x ) T ( ( G  o.  H
) `  y )
) ) )
3433imp 420 . . 3  |-  ( ( ( H : A -1-1-onto-> B  /\  A. x  e.  A  A. y  e.  A  ( x R y  <-> 
( H `  x
) S ( H `
 y ) ) )  /\  ( G : B -1-1-onto-> C  /\  A. z  e.  B  A. w  e.  B  ( z S w  <->  ( G `  z ) T ( G `  w ) ) ) )  ->  A. x  e.  A  A. y  e.  A  ( x R y  <-> 
( ( G  o.  H ) `  x
) T ( ( G  o.  H ) `
 y ) ) )
354, 34jca 520 . 2  |-  ( ( ( H : A -1-1-onto-> B  /\  A. x  e.  A  A. y  e.  A  ( x R y  <-> 
( H `  x
) S ( H `
 y ) ) )  /\  ( G : B -1-1-onto-> C  /\  A. z  e.  B  A. w  e.  B  ( z S w  <->  ( G `  z ) T ( G `  w ) ) ) )  -> 
( ( G  o.  H ) : A -1-1-onto-> C  /\  A. x  e.  A  A. y  e.  A  ( x R y  <-> 
( ( G  o.  H ) `  x
) T ( ( G  o.  H ) `
 y ) ) ) )
36 df-isom 4609 . . 3  |-  ( H 
Isom  R ,  S  ( A ,  B )  <-> 
( H : A -1-1-onto-> B  /\  A. x  e.  A  A. y  e.  A  ( x R y  <-> 
( H `  x
) S ( H `
 y ) ) ) )
37 df-isom 4609 . . 3  |-  ( G 
Isom  S ,  T  ( B ,  C )  <-> 
( G : B -1-1-onto-> C  /\  A. z  e.  B  A. w  e.  B  ( z S w  <-> 
( G `  z
) T ( G `
 w ) ) ) )
3836, 37anbi12i 681 . 2  |-  ( ( H  Isom  R ,  S  ( A ,  B )  /\  G  Isom  S ,  T  ( B ,  C ) )  <->  ( ( H : A -1-1-onto-> B  /\  A. x  e.  A  A. y  e.  A  ( x R y  <->  ( H `  x ) S ( H `  y ) ) )  /\  ( G : B -1-1-onto-> C  /\  A. z  e.  B  A. w  e.  B  ( z S w  <->  ( G `  z ) T ( G `  w ) ) ) ) )
39 df-isom 4609 . 2  |-  ( ( G  o.  H ) 
Isom  R ,  T  ( A ,  C )  <-> 
( ( G  o.  H ) : A -1-1-onto-> C  /\  A. x  e.  A  A. y  e.  A  ( x R y  <-> 
( ( G  o.  H ) `  x
) T ( ( G  o.  H ) `
 y ) ) ) )
4035, 38, 393imtr4i 259 1  |-  ( ( H  Isom  R ,  S  ( A ,  B )  /\  G  Isom  S ,  T  ( B ,  C ) )  ->  ( G  o.  H )  Isom  R ,  T  ( A ,  C ) )
Colors of variables: wff set class
Syntax hints:    -> wi 6    <-> wb 178    /\ wa 360    = wceq 1619    e. wcel 1621   A.wral 2509   class class class wbr 3920    o. ccom 4584   -->wf 4588   -1-1-onto->wf1o 4591   ` cfv 4592    Isom wiso 4593
This theorem is referenced by:  weisoeq  5705  oieu  7138  fz1isolem  11276  erdsze2lem2  22906
This theorem was proved from axioms:  ax-1 7  ax-2 8  ax-3 9  ax-mp 10  ax-5 1533  ax-6 1534  ax-7 1535  ax-gen 1536  ax-8 1623  ax-11 1624  ax-13 1625  ax-14 1626  ax-17 1628  ax-12o 1664  ax-10 1678  ax-9 1684  ax-4 1692  ax-16 1926  ax-ext 2234  ax-sep 4038  ax-nul 4046  ax-pr 4108  ax-un 4403
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3an 941  df-tru 1315  df-ex 1538  df-nf 1540  df-sb 1883  df-eu 2118  df-mo 2119  df-clab 2240  df-cleq 2246  df-clel 2249  df-nfc 2374  df-ne 2414  df-ral 2513  df-rex 2514  df-rab 2516  df-v 2729  df-sbc 2922  df-dif 3081  df-un 3083  df-in 3085  df-ss 3089  df-nul 3363  df-if 3471  df-sn 3550  df-pr 3551  df-op 3553  df-uni 3728  df-br 3921  df-opab 3975  df-id 4202  df-xp 4594  df-rel 4595  df-cnv 4596  df-co 4597  df-dm 4598  df-rn 4599  df-res 4600  df-ima 4601  df-fun 4602  df-fn 4603  df-f 4604  df-f1 4605  df-fo 4606  df-f1o 4607  df-fv 4608  df-isom 4609
  Copyright terms: Public domain W3C validator