Users' Mathboxes Mathbox for Jeff Madsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ismrer1 Unicode version

Theorem ismrer1 25728
Description: An isometry between  RR and  RR ^ 1. (Contributed by Jeff Madsen, 2-Sep-2009.) (Revised by Mario Carneiro, 22-Sep-2015.)
Hypotheses
Ref Expression
ismrer1.1  |-  R  =  ( ( abs  o.  -  )  |`  ( RR 
X.  RR ) )
ismrer1.2  |-  F  =  ( x  e.  RR  |->  ( { A }  X.  { x } ) )
Assertion
Ref Expression
ismrer1  |-  ( A  e.  V  ->  F  e.  ( R  Ismty  ( Rn
`  { A }
) ) )
Distinct variable group:    x, A
Allowed substitution hints:    R( x)    F( x)    V( x)

Proof of Theorem ismrer1
StepHypRef Expression
1 sneq 3555 . . . . . . . 8  |-  ( y  =  A  ->  { y }  =  { A } )
21xpeq1d 4619 . . . . . . 7  |-  ( y  =  A  ->  ( { y }  X.  { x } )  =  ( { A }  X.  { x }
) )
32mpteq2dv 4004 . . . . . 6  |-  ( y  =  A  ->  (
x  e.  RR  |->  ( { y }  X.  { x } ) )  =  ( x  e.  RR  |->  ( { A }  X.  {
x } ) ) )
4 ismrer1.2 . . . . . 6  |-  F  =  ( x  e.  RR  |->  ( { A }  X.  { x } ) )
53, 4syl6eqr 2303 . . . . 5  |-  ( y  =  A  ->  (
x  e.  RR  |->  ( { y }  X.  { x } ) )  =  F )
6 f1oeq1 5320 . . . . 5  |-  ( ( x  e.  RR  |->  ( { y }  X.  { x } ) )  =  F  -> 
( ( x  e.  RR  |->  ( { y }  X.  { x } ) ) : RR -1-1-onto-> ( RR  ^m  {
y } )  <->  F : RR
-1-1-onto-> ( RR  ^m  { y } ) ) )
75, 6syl 17 . . . 4  |-  ( y  =  A  ->  (
( x  e.  RR  |->  ( { y }  X.  { x } ) ) : RR -1-1-onto-> ( RR  ^m  {
y } )  <->  F : RR
-1-1-onto-> ( RR  ^m  { y } ) ) )
81oveq2d 5726 . . . . 5  |-  ( y  =  A  ->  ( RR  ^m  { y } )  =  ( RR 
^m  { A }
) )
9 f1oeq3 5322 . . . . 5  |-  ( ( RR  ^m  { y } )  =  ( RR  ^m  { A } )  ->  ( F : RR -1-1-onto-> ( RR  ^m  {
y } )  <->  F : RR
-1-1-onto-> ( RR  ^m  { A } ) ) )
108, 9syl 17 . . . 4  |-  ( y  =  A  ->  ( F : RR -1-1-onto-> ( RR  ^m  {
y } )  <->  F : RR
-1-1-onto-> ( RR  ^m  { A } ) ) )
117, 10bitrd 246 . . 3  |-  ( y  =  A  ->  (
( x  e.  RR  |->  ( { y }  X.  { x } ) ) : RR -1-1-onto-> ( RR  ^m  {
y } )  <->  F : RR
-1-1-onto-> ( RR  ^m  { A } ) ) )
12 eqid 2253 . . . 4  |-  { y }  =  { y }
13 reex 8708 . . . 4  |-  RR  e.  _V
14 vex 2730 . . . 4  |-  y  e. 
_V
15 eqid 2253 . . . 4  |-  ( x  e.  RR  |->  ( { y }  X.  {
x } ) )  =  ( x  e.  RR  |->  ( { y }  X.  { x } ) )
1612, 13, 14, 15mapsnf1o3 6702 . . 3  |-  ( x  e.  RR  |->  ( { y }  X.  {
x } ) ) : RR -1-1-onto-> ( RR  ^m  {
y } )
1711, 16vtoclg 2781 . 2  |-  ( A  e.  V  ->  F : RR -1-1-onto-> ( RR  ^m  { A } ) )
18 sneq 3555 . . . . . . . . . . . . . . . . 17  |-  ( x  =  y  ->  { x }  =  { y } )
1918xpeq2d 4620 . . . . . . . . . . . . . . . 16  |-  ( x  =  y  ->  ( { A }  X.  {
x } )  =  ( { A }  X.  { y } ) )
20 snex 4110 . . . . . . . . . . . . . . . . 17  |-  { A }  e.  _V
21 snex 4110 . . . . . . . . . . . . . . . . 17  |-  { x }  e.  _V
2220, 21xpex 4708 . . . . . . . . . . . . . . . 16  |-  ( { A }  X.  {
x } )  e. 
_V
2319, 4, 22fvmpt3i 5457 . . . . . . . . . . . . . . 15  |-  ( y  e.  RR  ->  ( F `  y )  =  ( { A }  X.  { y } ) )
2423fveq1d 5379 . . . . . . . . . . . . . 14  |-  ( y  e.  RR  ->  (
( F `  y
) `  A )  =  ( ( { A }  X.  {
y } ) `  A ) )
2524adantr 453 . . . . . . . . . . . . 13  |-  ( ( y  e.  RR  /\  z  e.  RR )  ->  ( ( F `  y ) `  A
)  =  ( ( { A }  X.  { y } ) `
 A ) )
26 snidg 3569 . . . . . . . . . . . . . 14  |-  ( A  e.  V  ->  A  e.  { A } )
27 fvconst2g 5579 . . . . . . . . . . . . . 14  |-  ( ( y  e.  _V  /\  A  e.  { A } )  ->  (
( { A }  X.  { y } ) `
 A )  =  y )
2814, 26, 27sylancr 647 . . . . . . . . . . . . 13  |-  ( A  e.  V  ->  (
( { A }  X.  { y } ) `
 A )  =  y )
2925, 28sylan9eqr 2307 . . . . . . . . . . . 12  |-  ( ( A  e.  V  /\  ( y  e.  RR  /\  z  e.  RR ) )  ->  ( ( F `  y ) `  A )  =  y )
30 sneq 3555 . . . . . . . . . . . . . . . . 17  |-  ( x  =  z  ->  { x }  =  { z } )
3130xpeq2d 4620 . . . . . . . . . . . . . . . 16  |-  ( x  =  z  ->  ( { A }  X.  {
x } )  =  ( { A }  X.  { z } ) )
3231, 4, 22fvmpt3i 5457 . . . . . . . . . . . . . . 15  |-  ( z  e.  RR  ->  ( F `  z )  =  ( { A }  X.  { z } ) )
3332fveq1d 5379 . . . . . . . . . . . . . 14  |-  ( z  e.  RR  ->  (
( F `  z
) `  A )  =  ( ( { A }  X.  {
z } ) `  A ) )
3433adantl 454 . . . . . . . . . . . . 13  |-  ( ( y  e.  RR  /\  z  e.  RR )  ->  ( ( F `  z ) `  A
)  =  ( ( { A }  X.  { z } ) `
 A ) )
35 vex 2730 . . . . . . . . . . . . . 14  |-  z  e. 
_V
36 fvconst2g 5579 . . . . . . . . . . . . . 14  |-  ( ( z  e.  _V  /\  A  e.  { A } )  ->  (
( { A }  X.  { z } ) `
 A )  =  z )
3735, 26, 36sylancr 647 . . . . . . . . . . . . 13  |-  ( A  e.  V  ->  (
( { A }  X.  { z } ) `
 A )  =  z )
3834, 37sylan9eqr 2307 . . . . . . . . . . . 12  |-  ( ( A  e.  V  /\  ( y  e.  RR  /\  z  e.  RR ) )  ->  ( ( F `  z ) `  A )  =  z )
3929, 38oveq12d 5728 . . . . . . . . . . 11  |-  ( ( A  e.  V  /\  ( y  e.  RR  /\  z  e.  RR ) )  ->  ( (
( F `  y
) `  A )  -  ( ( F `
 z ) `  A ) )  =  ( y  -  z
) )
4039oveq1d 5725 . . . . . . . . . 10  |-  ( ( A  e.  V  /\  ( y  e.  RR  /\  z  e.  RR ) )  ->  ( (
( ( F `  y ) `  A
)  -  ( ( F `  z ) `
 A ) ) ^ 2 )  =  ( ( y  -  z ) ^ 2 ) )
41 resubcl 8991 . . . . . . . . . . . 12  |-  ( ( y  e.  RR  /\  z  e.  RR )  ->  ( y  -  z
)  e.  RR )
4241adantl 454 . . . . . . . . . . 11  |-  ( ( A  e.  V  /\  ( y  e.  RR  /\  z  e.  RR ) )  ->  ( y  -  z )  e.  RR )
43 absresq 11664 . . . . . . . . . . 11  |-  ( ( y  -  z )  e.  RR  ->  (
( abs `  (
y  -  z ) ) ^ 2 )  =  ( ( y  -  z ) ^
2 ) )
4442, 43syl 17 . . . . . . . . . 10  |-  ( ( A  e.  V  /\  ( y  e.  RR  /\  z  e.  RR ) )  ->  ( ( abs `  ( y  -  z ) ) ^
2 )  =  ( ( y  -  z
) ^ 2 ) )
4540, 44eqtr4d 2288 . . . . . . . . 9  |-  ( ( A  e.  V  /\  ( y  e.  RR  /\  z  e.  RR ) )  ->  ( (
( ( F `  y ) `  A
)  -  ( ( F `  z ) `
 A ) ) ^ 2 )  =  ( ( abs `  (
y  -  z ) ) ^ 2 ) )
4642recnd 8741 . . . . . . . . . . . 12  |-  ( ( A  e.  V  /\  ( y  e.  RR  /\  z  e.  RR ) )  ->  ( y  -  z )  e.  CC )
4746abscld 11795 . . . . . . . . . . 11  |-  ( ( A  e.  V  /\  ( y  e.  RR  /\  z  e.  RR ) )  ->  ( abs `  ( y  -  z
) )  e.  RR )
4847recnd 8741 . . . . . . . . . 10  |-  ( ( A  e.  V  /\  ( y  e.  RR  /\  z  e.  RR ) )  ->  ( abs `  ( y  -  z
) )  e.  CC )
4948sqcld 11121 . . . . . . . . 9  |-  ( ( A  e.  V  /\  ( y  e.  RR  /\  z  e.  RR ) )  ->  ( ( abs `  ( y  -  z ) ) ^
2 )  e.  CC )
5045, 49eqeltrd 2327 . . . . . . . 8  |-  ( ( A  e.  V  /\  ( y  e.  RR  /\  z  e.  RR ) )  ->  ( (
( ( F `  y ) `  A
)  -  ( ( F `  z ) `
 A ) ) ^ 2 )  e.  CC )
51 fveq2 5377 . . . . . . . . . . 11  |-  ( k  =  A  ->  (
( F `  y
) `  k )  =  ( ( F `
 y ) `  A ) )
52 fveq2 5377 . . . . . . . . . . 11  |-  ( k  =  A  ->  (
( F `  z
) `  k )  =  ( ( F `
 z ) `  A ) )
5351, 52oveq12d 5728 . . . . . . . . . 10  |-  ( k  =  A  ->  (
( ( F `  y ) `  k
)  -  ( ( F `  z ) `
 k ) )  =  ( ( ( F `  y ) `
 A )  -  ( ( F `  z ) `  A
) ) )
5453oveq1d 5725 . . . . . . . . 9  |-  ( k  =  A  ->  (
( ( ( F `
 y ) `  k )  -  (
( F `  z
) `  k )
) ^ 2 )  =  ( ( ( ( F `  y
) `  A )  -  ( ( F `
 z ) `  A ) ) ^
2 ) )
5554sumsn 12090 . . . . . . . 8  |-  ( ( A  e.  V  /\  ( ( ( ( F `  y ) `
 A )  -  ( ( F `  z ) `  A
) ) ^ 2 )  e.  CC )  ->  sum_ k  e.  { A }  ( (
( ( F `  y ) `  k
)  -  ( ( F `  z ) `
 k ) ) ^ 2 )  =  ( ( ( ( F `  y ) `
 A )  -  ( ( F `  z ) `  A
) ) ^ 2 ) )
5650, 55syldan 458 . . . . . . 7  |-  ( ( A  e.  V  /\  ( y  e.  RR  /\  z  e.  RR ) )  ->  sum_ k  e. 
{ A }  (
( ( ( F `
 y ) `  k )  -  (
( F `  z
) `  k )
) ^ 2 )  =  ( ( ( ( F `  y
) `  A )  -  ( ( F `
 z ) `  A ) ) ^
2 ) )
5756, 45eqtrd 2285 . . . . . 6  |-  ( ( A  e.  V  /\  ( y  e.  RR  /\  z  e.  RR ) )  ->  sum_ k  e. 
{ A }  (
( ( ( F `
 y ) `  k )  -  (
( F `  z
) `  k )
) ^ 2 )  =  ( ( abs `  ( y  -  z
) ) ^ 2 ) )
5857fveq2d 5381 . . . . 5  |-  ( ( A  e.  V  /\  ( y  e.  RR  /\  z  e.  RR ) )  ->  ( sqr ` 
sum_ k  e.  { A }  ( (
( ( F `  y ) `  k
)  -  ( ( F `  z ) `
 k ) ) ^ 2 ) )  =  ( sqr `  (
( abs `  (
y  -  z ) ) ^ 2 ) ) )
5946absge0d 11803 . . . . . 6  |-  ( ( A  e.  V  /\  ( y  e.  RR  /\  z  e.  RR ) )  ->  0  <_  ( abs `  ( y  -  z ) ) )
6047, 59sqrsqd 11779 . . . . 5  |-  ( ( A  e.  V  /\  ( y  e.  RR  /\  z  e.  RR ) )  ->  ( sqr `  ( ( abs `  (
y  -  z ) ) ^ 2 ) )  =  ( abs `  ( y  -  z
) ) )
6158, 60eqtrd 2285 . . . 4  |-  ( ( A  e.  V  /\  ( y  e.  RR  /\  z  e.  RR ) )  ->  ( sqr ` 
sum_ k  e.  { A }  ( (
( ( F `  y ) `  k
)  -  ( ( F `  z ) `
 k ) ) ^ 2 ) )  =  ( abs `  (
y  -  z ) ) )
62 f1of 5329 . . . . . . . 8  |-  ( F : RR -1-1-onto-> ( RR  ^m  { A } )  ->  F : RR --> ( RR  ^m  { A } ) )
6317, 62syl 17 . . . . . . 7  |-  ( A  e.  V  ->  F : RR --> ( RR  ^m  { A } ) )
64 ffvelrn 5515 . . . . . . 7  |-  ( ( F : RR --> ( RR 
^m  { A }
)  /\  y  e.  RR )  ->  ( F `
 y )  e.  ( RR  ^m  { A } ) )
6563, 64sylan 459 . . . . . 6  |-  ( ( A  e.  V  /\  y  e.  RR )  ->  ( F `  y
)  e.  ( RR 
^m  { A }
) )
66 ffvelrn 5515 . . . . . . 7  |-  ( ( F : RR --> ( RR 
^m  { A }
)  /\  z  e.  RR )  ->  ( F `
 z )  e.  ( RR  ^m  { A } ) )
6763, 66sylan 459 . . . . . 6  |-  ( ( A  e.  V  /\  z  e.  RR )  ->  ( F `  z
)  e.  ( RR 
^m  { A }
) )
6865, 67anim12dan 813 . . . . 5  |-  ( ( A  e.  V  /\  ( y  e.  RR  /\  z  e.  RR ) )  ->  ( ( F `  y )  e.  ( RR  ^m  { A } )  /\  ( F `  z )  e.  ( RR  ^m  { A } ) ) )
69 snfi 6826 . . . . . 6  |-  { A }  e.  Fin
70 eqid 2253 . . . . . . 7  |-  ( RR 
^m  { A }
)  =  ( RR 
^m  { A }
)
7170rrnmval 25718 . . . . . 6  |-  ( ( { A }  e.  Fin  /\  ( F `  y )  e.  ( RR  ^m  { A } )  /\  ( F `  z )  e.  ( RR  ^m  { A } ) )  -> 
( ( F `  y ) ( Rn
`  { A }
) ( F `  z ) )  =  ( sqr `  sum_ k  e.  { A }  ( ( ( ( F `  y
) `  k )  -  ( ( F `
 z ) `  k ) ) ^
2 ) ) )
7269, 71mp3an1 1269 . . . . 5  |-  ( ( ( F `  y
)  e.  ( RR 
^m  { A }
)  /\  ( F `  z )  e.  ( RR  ^m  { A } ) )  -> 
( ( F `  y ) ( Rn
`  { A }
) ( F `  z ) )  =  ( sqr `  sum_ k  e.  { A }  ( ( ( ( F `  y
) `  k )  -  ( ( F `
 z ) `  k ) ) ^
2 ) ) )
7368, 72syl 17 . . . 4  |-  ( ( A  e.  V  /\  ( y  e.  RR  /\  z  e.  RR ) )  ->  ( ( F `  y )
( Rn `  { A } ) ( F `
 z ) )  =  ( sqr `  sum_ k  e.  { A }  ( ( ( ( F `  y
) `  k )  -  ( ( F `
 z ) `  k ) ) ^
2 ) ) )
74 ismrer1.1 . . . . . 6  |-  R  =  ( ( abs  o.  -  )  |`  ( RR 
X.  RR ) )
7574remetdval 18127 . . . . 5  |-  ( ( y  e.  RR  /\  z  e.  RR )  ->  ( y R z )  =  ( abs `  ( y  -  z
) ) )
7675adantl 454 . . . 4  |-  ( ( A  e.  V  /\  ( y  e.  RR  /\  z  e.  RR ) )  ->  ( y R z )  =  ( abs `  (
y  -  z ) ) )
7761, 73, 763eqtr4rd 2296 . . 3  |-  ( ( A  e.  V  /\  ( y  e.  RR  /\  z  e.  RR ) )  ->  ( y R z )  =  ( ( F `  y ) ( Rn
`  { A }
) ( F `  z ) ) )
7877ralrimivva 2597 . 2  |-  ( A  e.  V  ->  A. y  e.  RR  A. z  e.  RR  ( y R z )  =  ( ( F `  y
) ( Rn `  { A } ) ( F `  z ) ) )
7974rexmet 18129 . . 3  |-  R  e.  ( * Met `  RR )
8070rrnmet 25719 . . . 4  |-  ( { A }  e.  Fin  ->  ( Rn `  { A } )  e.  ( Met `  ( RR 
^m  { A }
) ) )
81 metxmet 17731 . . . 4  |-  ( ( Rn `  { A } )  e.  ( Met `  ( RR 
^m  { A }
) )  ->  ( Rn `  { A }
)  e.  ( * Met `  ( RR 
^m  { A }
) ) )
8269, 80, 81mp2b 11 . . 3  |-  ( Rn
`  { A }
)  e.  ( * Met `  ( RR 
^m  { A }
) )
83 isismty 25691 . . 3  |-  ( ( R  e.  ( * Met `  RR )  /\  ( Rn `  { A } )  e.  ( * Met `  ( RR  ^m  { A }
) ) )  -> 
( F  e.  ( R  Ismty  ( Rn `  { A } ) )  <->  ( F : RR
-1-1-onto-> ( RR  ^m  { A } )  /\  A. y  e.  RR  A. z  e.  RR  ( y R z )  =  ( ( F `  y
) ( Rn `  { A } ) ( F `  z ) ) ) ) )
8479, 82, 83mp2an 656 . 2  |-  ( F  e.  ( R  Ismty  ( Rn `  { A } ) )  <->  ( F : RR -1-1-onto-> ( RR  ^m  { A } )  /\  A. y  e.  RR  A. z  e.  RR  ( y R z )  =  ( ( F `  y
) ( Rn `  { A } ) ( F `  z ) ) ) )
8517, 78, 84sylanbrc 648 1  |-  ( A  e.  V  ->  F  e.  ( R  Ismty  ( Rn
`  { A }
) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 6    <-> wb 178    /\ wa 360    = wceq 1619    e. wcel 1621   A.wral 2509   _Vcvv 2727   {csn 3544    e. cmpt 3974    X. cxp 4578    |` cres 4582    o. ccom 4584   -->wf 4588   -1-1-onto->wf1o 4591   ` cfv 4592  (class class class)co 5710    ^m cmap 6658   Fincfn 6749   CCcc 8615   RRcr 8616    - cmin 8917   2c2 9675   ^cexp 10982   sqrcsqr 11595   abscabs 11596   sum_csu 12035   * Metcxmt 16201   Metcme 16202    Ismty cismty 25688   Rncrrn 25715
This theorem is referenced by:  reheibor  25729
This theorem was proved from axioms:  ax-1 7  ax-2 8  ax-3 9  ax-mp 10  ax-5 1533  ax-6 1534  ax-7 1535  ax-gen 1536  ax-8 1623  ax-11 1624  ax-13 1625  ax-14 1626  ax-17 1628  ax-12o 1664  ax-10 1678  ax-9 1684  ax-4 1692  ax-16 1926  ax-ext 2234  ax-rep 4028  ax-sep 4038  ax-nul 4046  ax-pow 4082  ax-pr 4108  ax-un 4403  ax-inf2 7226  ax-cnex 8673  ax-resscn 8674  ax-1cn 8675  ax-icn 8676  ax-addcl 8677  ax-addrcl 8678  ax-mulcl 8679  ax-mulrcl 8680  ax-mulcom 8681  ax-addass 8682  ax-mulass 8683  ax-distr 8684  ax-i2m1 8685  ax-1ne0 8686  ax-1rid 8687  ax-rnegex 8688  ax-rrecex 8689  ax-cnre 8690  ax-pre-lttri 8691  ax-pre-lttrn 8692  ax-pre-ltadd 8693  ax-pre-mulgt0 8694  ax-pre-sup 8695
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3or 940  df-3an 941  df-tru 1315  df-ex 1538  df-nf 1540  df-sb 1883  df-eu 2118  df-mo 2119  df-clab 2240  df-cleq 2246  df-clel 2249  df-nfc 2374  df-ne 2414  df-nel 2415  df-ral 2513  df-rex 2514  df-reu 2515  df-rab 2516  df-v 2729  df-sbc 2922  df-csb 3010  df-dif 3081  df-un 3083  df-in 3085  df-ss 3089  df-pss 3091  df-nul 3363  df-if 3471  df-pw 3532  df-sn 3550  df-pr 3551  df-tp 3552  df-op 3553  df-uni 3728  df-int 3761  df-iun 3805  df-br 3921  df-opab 3975  df-mpt 3976  df-tr 4011  df-eprel 4198  df-id 4202  df-po 4207  df-so 4208  df-fr 4245  df-se 4246  df-we 4247  df-ord 4288  df-on 4289  df-lim 4290  df-suc 4291  df-om 4548  df-xp 4594  df-rel 4595  df-cnv 4596  df-co 4597  df-dm 4598  df-rn 4599  df-res 4600  df-ima 4601  df-fun 4602  df-fn 4603  df-f 4604  df-f1 4605  df-fo 4606  df-f1o 4607  df-fv 4608  df-isom 4609  df-ov 5713  df-oprab 5714  df-mpt2 5715  df-1st 5974  df-2nd 5975  df-iota 6143  df-riota 6190  df-recs 6274  df-rdg 6309  df-1o 6365  df-oadd 6369  df-er 6546  df-map 6660  df-en 6750  df-dom 6751  df-sdom 6752  df-fin 6753  df-sup 7078  df-oi 7109  df-card 7456  df-pnf 8749  df-mnf 8750  df-xr 8751  df-ltxr 8752  df-le 8753  df-sub 8919  df-neg 8920  df-div 9304  df-n 9627  df-2 9684  df-3 9685  df-4 9686  df-n0 9845  df-z 9904  df-uz 10110  df-rp 10234  df-xadd 10332  df-ico 10540  df-fz 10661  df-fzo 10749  df-seq 10925  df-exp 10983  df-hash 11216  df-cj 11461  df-re 11462  df-im 11463  df-sqr 11597  df-abs 11598  df-clim 11839  df-sum 12036  df-xmet 16205  df-met 16206  df-ismty 25689  df-rrn 25716
  Copyright terms: Public domain W3C validator