HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  isch3 Unicode version

Theorem isch3 21651
Description: A Hilbert subspace is closed iff it is complete. A complete subspace is one in which every Cauchy sequence of vectors in the subspace converges to a member of the subspace (Definition of complete subspace in [Beran] p. 96). Remark 3.12 of [Beran] p. 107. (Contributed by NM, 24-Dec-2001.) (Revised by Mario Carneiro, 14-May-2014.) (New usage is discouraged.)
Assertion
Ref Expression
isch3  |-  ( H  e.  CH  <->  ( H  e.  SH  /\  A. f  e.  Cauchy  ( f : NN --> H  ->  E. x  e.  H  f  ~~>v  x ) ) )
Distinct variable group:    x, f, H

Proof of Theorem isch3
StepHypRef Expression
1 isch2 21633 . 2  |-  ( H  e.  CH  <->  ( H  e.  SH  /\  A. f A. x ( ( f : NN --> H  /\  f  ~~>v  x )  ->  x  e.  H )
) )
2 ax-hcompl 21611 . . . . . . . . . 10  |-  ( f  e.  Cauchy  ->  E. x  e.  ~H  f  ~~>v  x )
3 rexex 2564 . . . . . . . . . 10  |-  ( E. x  e.  ~H  f  ~~>v  x  ->  E. x  f  ~~>v  x )
42, 3syl 17 . . . . . . . . 9  |-  ( f  e.  Cauchy  ->  E. x  f  ~~>v  x )
5 19.29 1595 . . . . . . . . 9  |-  ( ( A. x ( ( f : NN --> H  /\  f  ~~>v  x )  ->  x  e.  H )  /\  E. x  f  ~~>v  x )  ->  E. x
( ( ( f : NN --> H  /\  f  ~~>v  x )  ->  x  e.  H )  /\  f  ~~>v  x ) )
64, 5sylan2 462 . . . . . . . 8  |-  ( ( A. x ( ( f : NN --> H  /\  f  ~~>v  x )  ->  x  e.  H )  /\  f  e.  Cauchy )  ->  E. x ( ( ( f : NN --> H  /\  f  ~~>v  x )  ->  x  e.  H )  /\  f  ~~>v  x ) )
7 id 21 . . . . . . . . . . . . . . 15  |-  ( ( ( f : NN --> H  /\  f  ~~>v  x )  ->  x  e.  H
)  ->  ( (
f : NN --> H  /\  f  ~~>v  x )  ->  x  e.  H )
)
87imp 420 . . . . . . . . . . . . . 14  |-  ( ( ( ( f : NN --> H  /\  f  ~~>v  x )  ->  x  e.  H )  /\  (
f : NN --> H  /\  f  ~~>v  x ) )  ->  x  e.  H
)
98an12s 779 . . . . . . . . . . . . 13  |-  ( ( f : NN --> H  /\  ( ( ( f : NN --> H  /\  f  ~~>v  x )  ->  x  e.  H )  /\  f  ~~>v  x ) )  ->  x  e.  H )
10 simprr 736 . . . . . . . . . . . . 13  |-  ( ( f : NN --> H  /\  ( ( ( f : NN --> H  /\  f  ~~>v  x )  ->  x  e.  H )  /\  f  ~~>v  x ) )  ->  f  ~~>v  x )
119, 10jca 520 . . . . . . . . . . . 12  |-  ( ( f : NN --> H  /\  ( ( ( f : NN --> H  /\  f  ~~>v  x )  ->  x  e.  H )  /\  f  ~~>v  x ) )  ->  ( x  e.  H  /\  f  ~~>v  x ) )
1211ex 425 . . . . . . . . . . 11  |-  ( f : NN --> H  -> 
( ( ( ( f : NN --> H  /\  f  ~~>v  x )  ->  x  e.  H )  /\  f  ~~>v  x )  ->  ( x  e.  H  /\  f  ~~>v  x ) ) )
1312eximdv 2018 . . . . . . . . . 10  |-  ( f : NN --> H  -> 
( E. x ( ( ( f : NN --> H  /\  f  ~~>v  x )  ->  x  e.  H )  /\  f  ~~>v  x )  ->  E. x
( x  e.  H  /\  f  ~~>v  x ) ) )
1413com12 29 . . . . . . . . 9  |-  ( E. x ( ( ( f : NN --> H  /\  f  ~~>v  x )  ->  x  e.  H )  /\  f  ~~>v  x )  ->  ( f : NN --> H  ->  E. x
( x  e.  H  /\  f  ~~>v  x ) ) )
15 df-rex 2514 . . . . . . . . 9  |-  ( E. x  e.  H  f 
~~>v  x  <->  E. x ( x  e.  H  /\  f  ~~>v  x ) )
1614, 15syl6ibr 220 . . . . . . . 8  |-  ( E. x ( ( ( f : NN --> H  /\  f  ~~>v  x )  ->  x  e.  H )  /\  f  ~~>v  x )  ->  ( f : NN --> H  ->  E. x  e.  H  f  ~~>v  x ) )
176, 16syl 17 . . . . . . 7  |-  ( ( A. x ( ( f : NN --> H  /\  f  ~~>v  x )  ->  x  e.  H )  /\  f  e.  Cauchy )  -> 
( f : NN --> H  ->  E. x  e.  H  f  ~~>v  x ) )
1817ex 425 . . . . . 6  |-  ( A. x ( ( f : NN --> H  /\  f  ~~>v  x )  ->  x  e.  H )  ->  ( f  e.  Cauchy  -> 
( f : NN --> H  ->  E. x  e.  H  f  ~~>v  x ) ) )
19 nfv 1629 . . . . . . . 8  |-  F/ x  f  e.  Cauchy
20 nfv 1629 . . . . . . . . 9  |-  F/ x  f : NN --> H
21 nfre1 2561 . . . . . . . . 9  |-  F/ x E. x  e.  H  f  ~~>v  x
2220, 21nfim 1735 . . . . . . . 8  |-  F/ x
( f : NN --> H  ->  E. x  e.  H  f  ~~>v  x )
2319, 22nfim 1735 . . . . . . 7  |-  F/ x
( f  e.  Cauchy  -> 
( f : NN --> H  ->  E. x  e.  H  f  ~~>v  x ) )
24 bi2.04 352 . . . . . . . . 9  |-  ( ( f  e.  Cauchy  ->  (
f : NN --> H  ->  E. x  e.  H  f  ~~>v  x ) )  <-> 
( f : NN --> H  ->  ( f  e. 
Cauchy  ->  E. x  e.  H  f  ~~>v  x ) ) )
25 hlimcaui 21646 . . . . . . . . . . . 12  |-  ( f 
~~>v  x  ->  f  e.  Cauchy )
2625imim1i 56 . . . . . . . . . . 11  |-  ( ( f  e.  Cauchy  ->  E. x  e.  H  f  ~~>v  x )  ->  ( f  ~~>v  x  ->  E. x  e.  H  f  ~~>v  x ) )
27 rexex 2564 . . . . . . . . . . . . 13  |-  ( E. x  e.  H  f 
~~>v  x  ->  E. x  f  ~~>v  x )
28 hlimeui 21650 . . . . . . . . . . . . 13  |-  ( E. x  f  ~~>v  x  <->  E! x  f  ~~>v  x )
2927, 28sylib 190 . . . . . . . . . . . 12  |-  ( E. x  e.  H  f 
~~>v  x  ->  E! x  f  ~~>v  x )
30 exancom 1584 . . . . . . . . . . . . . 14  |-  ( E. x ( x  e.  H  /\  f  ~~>v  x )  <->  E. x ( f 
~~>v  x  /\  x  e.  H ) )
3115, 30bitri 242 . . . . . . . . . . . . 13  |-  ( E. x  e.  H  f 
~~>v  x  <->  E. x ( f 
~~>v  x  /\  x  e.  H ) )
3231biimpi 188 . . . . . . . . . . . 12  |-  ( E. x  e.  H  f 
~~>v  x  ->  E. x
( f  ~~>v  x  /\  x  e.  H )
)
33 eupick 2176 . . . . . . . . . . . 12  |-  ( ( E! x  f  ~~>v  x  /\  E. x ( f  ~~>v  x  /\  x  e.  H ) )  -> 
( f  ~~>v  x  ->  x  e.  H )
)
3429, 32, 33syl2anc 645 . . . . . . . . . . 11  |-  ( E. x  e.  H  f 
~~>v  x  ->  ( f  ~~>v  x  ->  x  e.  H ) )
3526, 34syli 35 . . . . . . . . . 10  |-  ( ( f  e.  Cauchy  ->  E. x  e.  H  f  ~~>v  x )  ->  ( f  ~~>v  x  ->  x  e.  H ) )
3635imim2i 15 . . . . . . . . 9  |-  ( ( f : NN --> H  -> 
( f  e.  Cauchy  ->  E. x  e.  H  f  ~~>v  x ) )  ->  ( f : NN --> H  ->  (
f  ~~>v  x  ->  x  e.  H ) ) )
3724, 36sylbi 189 . . . . . . . 8  |-  ( ( f  e.  Cauchy  ->  (
f : NN --> H  ->  E. x  e.  H  f  ~~>v  x ) )  ->  ( f : NN --> H  ->  (
f  ~~>v  x  ->  x  e.  H ) ) )
3837imp3a 422 . . . . . . 7  |-  ( ( f  e.  Cauchy  ->  (
f : NN --> H  ->  E. x  e.  H  f  ~~>v  x ) )  ->  ( ( f : NN --> H  /\  f  ~~>v  x )  ->  x  e.  H )
)
3923, 38alrimi 1706 . . . . . 6  |-  ( ( f  e.  Cauchy  ->  (
f : NN --> H  ->  E. x  e.  H  f  ~~>v  x ) )  ->  A. x ( ( f : NN --> H  /\  f  ~~>v  x )  ->  x  e.  H )
)
4018, 39impbii 182 . . . . 5  |-  ( A. x ( ( f : NN --> H  /\  f  ~~>v  x )  ->  x  e.  H )  <->  ( f  e.  Cauchy  ->  (
f : NN --> H  ->  E. x  e.  H  f  ~~>v  x ) ) )
4140albii 1554 . . . 4  |-  ( A. f A. x ( ( f : NN --> H  /\  f  ~~>v  x )  ->  x  e.  H )  <->  A. f ( f  e. 
Cauchy  ->  ( f : NN --> H  ->  E. x  e.  H  f  ~~>v  x ) ) )
42 df-ral 2513 . . . 4  |-  ( A. f  e.  Cauchy  ( f : NN --> H  ->  E. x  e.  H  f  ~~>v  x )  <->  A. f
( f  e.  Cauchy  -> 
( f : NN --> H  ->  E. x  e.  H  f  ~~>v  x ) ) )
4341, 42bitr4i 245 . . 3  |-  ( A. f A. x ( ( f : NN --> H  /\  f  ~~>v  x )  ->  x  e.  H )  <->  A. f  e.  Cauchy  ( f : NN --> H  ->  E. x  e.  H  f  ~~>v  x ) )
4443anbi2i 678 . 2  |-  ( ( H  e.  SH  /\  A. f A. x ( ( f : NN --> H  /\  f  ~~>v  x )  ->  x  e.  H
) )  <->  ( H  e.  SH  /\  A. f  e.  Cauchy  ( f : NN --> H  ->  E. x  e.  H  f  ~~>v  x ) ) )
451, 44bitri 242 1  |-  ( H  e.  CH  <->  ( H  e.  SH  /\  A. f  e.  Cauchy  ( f : NN --> H  ->  E. x  e.  H  f  ~~>v  x ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 6    <-> wb 178    /\ wa 360   A.wal 1532   E.wex 1537    e. wcel 1621   E!weu 2114   A.wral 2509   E.wrex 2510   class class class wbr 3920   -->wf 4588   NNcn 9626   ~Hchil 21329   Cauchyccau 21336    ~~>v chli 21337   SHcsh 21338   CHcch 21339
This theorem is referenced by:  chcompl  21652  occl  21713
This theorem was proved from axioms:  ax-1 7  ax-2 8  ax-3 9  ax-mp 10  ax-5 1533  ax-6 1534  ax-7 1535  ax-gen 1536  ax-8 1623  ax-11 1624  ax-13 1625  ax-14 1626  ax-17 1628  ax-12o 1664  ax-10 1678  ax-9 1684  ax-4 1692  ax-16 1926  ax-ext 2234  ax-rep 4028  ax-sep 4038  ax-nul 4046  ax-pow 4082  ax-pr 4108  ax-un 4403  ax-cnex 8673  ax-resscn 8674  ax-1cn 8675  ax-icn 8676  ax-addcl 8677  ax-addrcl 8678  ax-mulcl 8679  ax-mulrcl 8680  ax-mulcom 8681  ax-addass 8682  ax-mulass 8683  ax-distr 8684  ax-i2m1 8685  ax-1ne0 8686  ax-1rid 8687  ax-rnegex 8688  ax-rrecex 8689  ax-cnre 8690  ax-pre-lttri 8691  ax-pre-lttrn 8692  ax-pre-ltadd 8693  ax-pre-mulgt0 8694  ax-pre-sup 8695  ax-addf 8696  ax-mulf 8697  ax-hilex 21409  ax-hfvadd 21410  ax-hvcom 21411  ax-hvass 21412  ax-hv0cl 21413  ax-hvaddid 21414  ax-hfvmul 21415  ax-hvmulid 21416  ax-hvmulass 21417  ax-hvdistr1 21418  ax-hvdistr2 21419  ax-hvmul0 21420  ax-hfi 21488  ax-his1 21491  ax-his2 21492  ax-his3 21493  ax-his4 21494  ax-hcompl 21611
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3or 940  df-3an 941  df-tru 1315  df-ex 1538  df-nf 1540  df-sb 1883  df-eu 2118  df-mo 2119  df-clab 2240  df-cleq 2246  df-clel 2249  df-nfc 2374  df-ne 2414  df-nel 2415  df-ral 2513  df-rex 2514  df-reu 2515  df-rab 2516  df-v 2729  df-sbc 2922  df-csb 3010  df-dif 3081  df-un 3083  df-in 3085  df-ss 3089  df-pss 3091  df-nul 3363  df-if 3471  df-pw 3532  df-sn 3550  df-pr 3551  df-tp 3552  df-op 3553  df-uni 3728  df-iun 3805  df-br 3921  df-opab 3975  df-mpt 3976  df-tr 4011  df-eprel 4198  df-id 4202  df-po 4207  df-so 4208  df-fr 4245  df-we 4247  df-ord 4288  df-on 4289  df-lim 4290  df-suc 4291  df-om 4548  df-xp 4594  df-rel 4595  df-cnv 4596  df-co 4597  df-dm 4598  df-rn 4599  df-res 4600  df-ima 4601  df-fun 4602  df-fn 4603  df-f 4604  df-f1 4605  df-fo 4606  df-f1o 4607  df-fv 4608  df-ov 5713  df-oprab 5714  df-mpt2 5715  df-1st 5974  df-2nd 5975  df-iota 6143  df-riota 6190  df-recs 6274  df-rdg 6309  df-er 6546  df-map 6660  df-pm 6661  df-en 6750  df-dom 6751  df-sdom 6752  df-sup 7078  df-pnf 8749  df-mnf 8750  df-xr 8751  df-ltxr 8752  df-le 8753  df-sub 8919  df-neg 8920  df-div 9304  df-n 9627  df-2 9684  df-3 9685  df-4 9686  df-n0 9845  df-z 9904  df-uz 10110  df-q 10196  df-rp 10234  df-xneg 10331  df-xadd 10332  df-xmul 10333  df-icc 10541  df-seq 10925  df-exp 10983  df-cj 11461  df-re 11462  df-im 11463  df-sqr 11597  df-abs 11598  df-topgen 13218  df-xmet 16205  df-met 16206  df-bl 16207  df-mopn 16208  df-top 16468  df-bases 16470  df-topon 16471  df-lm 16791  df-haus 16875  df-cau 18514  df-grpo 20688  df-gid 20689  df-ginv 20690  df-gdiv 20691  df-ablo 20779  df-vc 20932  df-nv 20978  df-va 20981  df-ba 20982  df-sm 20983  df-0v 20984  df-vs 20985  df-nmcv 20986  df-ims 20987  df-hnorm 21378  df-hvsub 21381  df-hlim 21382  df-hcau 21383  df-ch 21631
  Copyright terms: Public domain W3C validator