Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  irrapx1 Unicode version

Theorem irrapx1 26079
Description: Dirichlet's approximation theorem. Every positive irrational number has infinitely many rational approximations which are closer than the inverse squares of their reduced denominators. Lemma 61 in [vandenDries] p. 42. (Contributed by Stefan O'Rear, 14-Sep-2014.)
Assertion
Ref Expression
irrapx1  |-  ( A  e.  ( RR+  \  QQ )  ->  { y  e.  QQ  |  ( 0  <  y  /\  ( abs `  ( y  -  A ) )  < 
( (denom `  y
) ^ -u 2
) ) }  ~~  NN )
Distinct variable group:    y, A

Proof of Theorem irrapx1
StepHypRef Expression
1 qnnen 12366 . . . 4  |-  QQ  ~~  NN
2 nnenom 10920 . . . 4  |-  NN  ~~  om
31, 2entri 6800 . . 3  |-  QQ  ~~  om
43, 2pm3.2i 443 . 2  |-  ( QQ 
~~  om  /\  NN  ~~  om )
5 ssrab2 3179 . . . . . 6  |-  { y  e.  QQ  |  ( 0  <  y  /\  ( abs `  ( y  -  A ) )  <  ( (denom `  y ) ^ -u 2
) ) }  C_  QQ
6 qssre 10205 . . . . . 6  |-  QQ  C_  RR
75, 6sstri 3109 . . . . 5  |-  { y  e.  QQ  |  ( 0  <  y  /\  ( abs `  ( y  -  A ) )  <  ( (denom `  y ) ^ -u 2
) ) }  C_  RR
87a1i 12 . . . 4  |-  ( A  e.  ( RR+  \  QQ )  ->  { y  e.  QQ  |  ( 0  <  y  /\  ( abs `  ( y  -  A ) )  < 
( (denom `  y
) ^ -u 2
) ) }  C_  RR )
9 eldifi 3215 . . . . 5  |-  ( A  e.  ( RR+  \  QQ )  ->  A  e.  RR+ )
109rpred 10269 . . . 4  |-  ( A  e.  ( RR+  \  QQ )  ->  A  e.  RR )
11 eldifn 3216 . . . . 5  |-  ( A  e.  ( RR+  \  QQ )  ->  -.  A  e.  QQ )
125sseli 3099 . . . . 5  |-  ( A  e.  { y  e.  QQ  |  ( 0  <  y  /\  ( abs `  ( y  -  A ) )  < 
( (denom `  y
) ^ -u 2
) ) }  ->  A  e.  QQ )
1311, 12nsyl 115 . . . 4  |-  ( A  e.  ( RR+  \  QQ )  ->  -.  A  e.  { y  e.  QQ  | 
( 0  <  y  /\  ( abs `  (
y  -  A ) )  <  ( (denom `  y ) ^ -u 2
) ) } )
14 irrapxlem6 26078 . . . . . 6  |-  ( ( A  e.  RR+  /\  a  e.  RR+ )  ->  E. b  e.  { y  e.  QQ  |  ( 0  < 
y  /\  ( abs `  ( y  -  A
) )  <  (
(denom `  y ) ^ -u 2 ) ) }  ( abs `  (
b  -  A ) )  <  a )
159, 14sylan 459 . . . . 5  |-  ( ( A  e.  ( RR+  \  QQ )  /\  a  e.  RR+ )  ->  E. b  e.  { y  e.  QQ  |  ( 0  < 
y  /\  ( abs `  ( y  -  A
) )  <  (
(denom `  y ) ^ -u 2 ) ) }  ( abs `  (
b  -  A ) )  <  a )
1615ralrimiva 2588 . . . 4  |-  ( A  e.  ( RR+  \  QQ )  ->  A. a  e.  RR+  E. b  e.  { y  e.  QQ  |  ( 0  <  y  /\  ( abs `  ( y  -  A ) )  <  ( (denom `  y ) ^ -u 2
) ) }  ( abs `  ( b  -  A ) )  < 
a )
17 rencldnfi 26070 . . . 4  |-  ( ( ( { y  e.  QQ  |  ( 0  <  y  /\  ( abs `  ( y  -  A ) )  < 
( (denom `  y
) ^ -u 2
) ) }  C_  RR  /\  A  e.  RR  /\ 
-.  A  e.  {
y  e.  QQ  | 
( 0  <  y  /\  ( abs `  (
y  -  A ) )  <  ( (denom `  y ) ^ -u 2
) ) } )  /\  A. a  e.  RR+  E. b  e.  {
y  e.  QQ  | 
( 0  <  y  /\  ( abs `  (
y  -  A ) )  <  ( (denom `  y ) ^ -u 2
) ) }  ( abs `  ( b  -  A ) )  < 
a )  ->  -.  { y  e.  QQ  | 
( 0  <  y  /\  ( abs `  (
y  -  A ) )  <  ( (denom `  y ) ^ -u 2
) ) }  e.  Fin )
188, 10, 13, 16, 17syl31anc 1190 . . 3  |-  ( A  e.  ( RR+  \  QQ )  ->  -.  { y  e.  QQ  |  ( 0  <  y  /\  ( abs `  ( y  -  A ) )  < 
( (denom `  y
) ^ -u 2
) ) }  e.  Fin )
1918, 5jctil 525 . 2  |-  ( A  e.  ( RR+  \  QQ )  ->  ( { y  e.  QQ  |  ( 0  <  y  /\  ( abs `  ( y  -  A ) )  <  ( (denom `  y ) ^ -u 2
) ) }  C_  QQ  /\  -.  { y  e.  QQ  |  ( 0  <  y  /\  ( abs `  ( y  -  A ) )  <  ( (denom `  y ) ^ -u 2
) ) }  e.  Fin ) )
20 ctbnfien 26067 . 2  |-  ( ( ( QQ  ~~  om  /\  NN  ~~  om )  /\  ( { y  e.  QQ  |  ( 0  <  y  /\  ( abs `  ( y  -  A ) )  < 
( (denom `  y
) ^ -u 2
) ) }  C_  QQ  /\  -.  { y  e.  QQ  |  ( 0  <  y  /\  ( abs `  ( y  -  A ) )  <  ( (denom `  y ) ^ -u 2
) ) }  e.  Fin ) )  ->  { y  e.  QQ  |  ( 0  <  y  /\  ( abs `  ( y  -  A ) )  <  ( (denom `  y ) ^ -u 2
) ) }  ~~  NN )
214, 19, 20sylancr 647 1  |-  ( A  e.  ( RR+  \  QQ )  ->  { y  e.  QQ  |  ( 0  <  y  /\  ( abs `  ( y  -  A ) )  < 
( (denom `  y
) ^ -u 2
) ) }  ~~  NN )
Colors of variables: wff set class
Syntax hints:   -. wn 5    -> wi 6    /\ wa 360    e. wcel 1621   A.wral 2509   E.wrex 2510   {crab 2512    \ cdif 3075    C_ wss 3078   class class class wbr 3920   omcom 4547   ` cfv 4592  (class class class)co 5710    ~~ cen 6746   Fincfn 6749   RRcr 8616   0cc0 8617    < clt 8747    - cmin 8917   -ucneg 8918   NNcn 9626   2c2 9675   QQcq 10195   RR+crp 10233   ^cexp 10982   abscabs 11596  denomcdenom 12679
This theorem is referenced by:  pellexlem4  26083
This theorem was proved from axioms:  ax-1 7  ax-2 8  ax-3 9  ax-mp 10  ax-5 1533  ax-6 1534  ax-7 1535  ax-gen 1536  ax-8 1623  ax-11 1624  ax-13 1625  ax-14 1626  ax-17 1628  ax-12o 1664  ax-10 1678  ax-9 1684  ax-4 1692  ax-16 1926  ax-ext 2234  ax-rep 4028  ax-sep 4038  ax-nul 4046  ax-pow 4082  ax-pr 4108  ax-un 4403  ax-inf2 7226  ax-cnex 8673  ax-resscn 8674  ax-1cn 8675  ax-icn 8676  ax-addcl 8677  ax-addrcl 8678  ax-mulcl 8679  ax-mulrcl 8680  ax-mulcom 8681  ax-addass 8682  ax-mulass 8683  ax-distr 8684  ax-i2m1 8685  ax-1ne0 8686  ax-1rid 8687  ax-rnegex 8688  ax-rrecex 8689  ax-cnre 8690  ax-pre-lttri 8691  ax-pre-lttrn 8692  ax-pre-ltadd 8693  ax-pre-mulgt0 8694  ax-pre-sup 8695
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3or 940  df-3an 941  df-tru 1315  df-ex 1538  df-nf 1540  df-sb 1883  df-eu 2118  df-mo 2119  df-clab 2240  df-cleq 2246  df-clel 2249  df-nfc 2374  df-ne 2414  df-nel 2415  df-ral 2513  df-rex 2514  df-reu 2515  df-rab 2516  df-v 2729  df-sbc 2922  df-csb 3010  df-dif 3081  df-un 3083  df-in 3085  df-ss 3089  df-pss 3091  df-nul 3363  df-if 3471  df-pw 3532  df-sn 3550  df-pr 3551  df-tp 3552  df-op 3553  df-uni 3728  df-int 3761  df-iun 3805  df-br 3921  df-opab 3975  df-mpt 3976  df-tr 4011  df-eprel 4198  df-id 4202  df-po 4207  df-so 4208  df-fr 4245  df-se 4246  df-we 4247  df-ord 4288  df-on 4289  df-lim 4290  df-suc 4291  df-om 4548  df-xp 4594  df-rel 4595  df-cnv 4596  df-co 4597  df-dm 4598  df-rn 4599  df-res 4600  df-ima 4601  df-fun 4602  df-fn 4603  df-f 4604  df-f1 4605  df-fo 4606  df-f1o 4607  df-fv 4608  df-isom 4609  df-ov 5713  df-oprab 5714  df-mpt2 5715  df-1st 5974  df-2nd 5975  df-iota 6143  df-riota 6190  df-recs 6274  df-rdg 6309  df-1o 6365  df-oadd 6369  df-omul 6370  df-er 6546  df-map 6660  df-en 6750  df-dom 6751  df-sdom 6752  df-fin 6753  df-sup 7078  df-oi 7109  df-card 7456  df-acn 7459  df-pnf 8749  df-mnf 8750  df-xr 8751  df-ltxr 8752  df-le 8753  df-sub 8919  df-neg 8920  df-div 9304  df-n 9627  df-2 9684  df-3 9685  df-n0 9845  df-z 9904  df-uz 10110  df-q 10196  df-rp 10234  df-ico 10540  df-fz 10661  df-fl 10803  df-mod 10852  df-seq 10925  df-exp 10983  df-hash 11216  df-cj 11461  df-re 11462  df-im 11463  df-sqr 11597  df-abs 11598  df-divides 12406  df-gcd 12560  df-numer 12680  df-denom 12681
  Copyright terms: Public domain W3C validator