Users' Mathboxes Mathbox for Andrew Salmon < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  iotasbcq Unicode version

Theorem iotasbcq 26804
Description: Theorem *14.272 in [WhiteheadRussell] p. 193. (Contributed by Andrew Salmon, 11-Jul-2011.)
Assertion
Ref Expression
iotasbcq  |-  ( A. x ( ph  <->  ps )  ->  ( [. ( iota
x ph )  /  y ]. ch  <->  [. ( iota x ps )  /  y ]. ch ) )

Proof of Theorem iotasbcq
StepHypRef Expression
1 iotabi 6152 . 2  |-  ( A. x ( ph  <->  ps )  ->  ( iota x ph )  =  ( iota x ps ) )
2 dfsbcq 2923 . 2  |-  ( ( iota x ph )  =  ( iota x ps )  ->  ( [. ( iota x ph )  /  y ]. ch  <->  [. ( iota x ps )  /  y ]. ch ) )
31, 2syl 17 1  |-  ( A. x ( ph  <->  ps )  ->  ( [. ( iota
x ph )  /  y ]. ch  <->  [. ( iota x ps )  /  y ]. ch ) )
Colors of variables: wff set class
Syntax hints:    -> wi 6    <-> wb 178   A.wal 1532    = wceq 1619   [.wsbc 2921   iotacio 6141
This theorem was proved from axioms:  ax-1 7  ax-2 8  ax-3 9  ax-mp 10  ax-5 1533  ax-6 1534  ax-7 1535  ax-gen 1536  ax-8 1623  ax-11 1624  ax-17 1628  ax-12o 1664  ax-10 1678  ax-9 1684  ax-4 1692  ax-16 1926  ax-ext 2234
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-tru 1315  df-ex 1538  df-nf 1540  df-sb 1883  df-clab 2240  df-cleq 2246  df-clel 2249  df-nfc 2374  df-rex 2514  df-sbc 2922  df-uni 3728  df-iota 6143
  Copyright terms: Public domain W3C validator