Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  invdif Unicode version

Theorem invdif 3317
 Description: Intersection with universal complement. Remark in [Stoll] p. 20. (Contributed by NM, 17-Aug-2004.)
Assertion
Ref Expression
invdif

Proof of Theorem invdif
StepHypRef Expression
1 dfin2 3312 . 2
2 ddif 3222 . . 3
32difeq2i 3208 . 2
41, 3eqtri 2273 1
 Colors of variables: wff set class Syntax hints:   wceq 1619  cvv 2727   cdif 3075   cin 3077 This theorem is referenced by:  indif2  3319  difundi  3328  difundir  3329  difindi  3330  difindir  3331  difun1  3335  undif1  3435  difdifdir  3447  dfsup2  7079  dfsup2OLD  7080  nn0supp  9896  fsuppeq  26425 This theorem was proved from axioms:  ax-1 7  ax-2 8  ax-3 9  ax-mp 10  ax-5 1533  ax-6 1534  ax-7 1535  ax-gen 1536  ax-8 1623  ax-11 1624  ax-17 1628  ax-12o 1664  ax-10 1678  ax-9 1684  ax-4 1692  ax-16 1926  ax-ext 2234 This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-tru 1315  df-ex 1538  df-nf 1540  df-sb 1883  df-clab 2240  df-cleq 2246  df-clel 2249  df-nfc 2374  df-ral 2513  df-rab 2516  df-v 2729  df-dif 3081  df-in 3085
 Copyright terms: Public domain W3C validator