MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  innei Unicode version

Theorem innei 16694
Description: The intersection of two neighborhoods of a set is also a neighborhood of the set. Proposition Vii of [BourbakiTop1] p. I.3 . (Contributed by FL, 28-Sep-2006.)
Assertion
Ref Expression
innei  |-  ( ( J  e.  Top  /\  N  e.  ( ( nei `  J ) `  S )  /\  M  e.  ( ( nei `  J
) `  S )
)  ->  ( N  i^i  M )  e.  ( ( nei `  J
) `  S )
)

Proof of Theorem innei
StepHypRef Expression
1 eqid 2253 . . . . 5  |-  U. J  =  U. J
21neii1 16675 . . . 4  |-  ( ( J  e.  Top  /\  N  e.  ( ( nei `  J ) `  S ) )  ->  N  C_  U. J )
3 ssinss1 3304 . . . 4  |-  ( N 
C_  U. J  ->  ( N  i^i  M )  C_  U. J )
42, 3syl 17 . . 3  |-  ( ( J  e.  Top  /\  N  e.  ( ( nei `  J ) `  S ) )  -> 
( N  i^i  M
)  C_  U. J )
543adant3 980 . 2  |-  ( ( J  e.  Top  /\  N  e.  ( ( nei `  J ) `  S )  /\  M  e.  ( ( nei `  J
) `  S )
)  ->  ( N  i^i  M )  C_  U. J
)
6 neii2 16677 . . . . 5  |-  ( ( J  e.  Top  /\  N  e.  ( ( nei `  J ) `  S ) )  ->  E. h  e.  J  ( S  C_  h  /\  h  C_  N ) )
7 neii2 16677 . . . . 5  |-  ( ( J  e.  Top  /\  M  e.  ( ( nei `  J ) `  S ) )  ->  E. v  e.  J  ( S  C_  v  /\  v  C_  M ) )
86, 7anim12dan 813 . . . 4  |-  ( ( J  e.  Top  /\  ( N  e.  (
( nei `  J
) `  S )  /\  M  e.  (
( nei `  J
) `  S )
) )  ->  ( E. h  e.  J  ( S  C_  h  /\  h  C_  N )  /\  E. v  e.  J  ( S  C_  v  /\  v  C_  M ) ) )
9 inopn 16477 . . . . . . . . . . . 12  |-  ( ( J  e.  Top  /\  h  e.  J  /\  v  e.  J )  ->  ( h  i^i  v
)  e.  J )
1093expa 1156 . . . . . . . . . . 11  |-  ( ( ( J  e.  Top  /\  h  e.  J )  /\  v  e.  J
)  ->  ( h  i^i  v )  e.  J
)
11 ssin 3298 . . . . . . . . . . . . . 14  |-  ( ( S  C_  h  /\  S  C_  v )  <->  S  C_  (
h  i^i  v )
)
1211biimpi 188 . . . . . . . . . . . . 13  |-  ( ( S  C_  h  /\  S  C_  v )  ->  S  C_  ( h  i^i  v ) )
13 ss2in 3303 . . . . . . . . . . . . 13  |-  ( ( h  C_  N  /\  v  C_  M )  -> 
( h  i^i  v
)  C_  ( N  i^i  M ) )
1412, 13anim12i 551 . . . . . . . . . . . 12  |-  ( ( ( S  C_  h  /\  S  C_  v )  /\  ( h  C_  N  /\  v  C_  M
) )  ->  ( S  C_  ( h  i^i  v )  /\  (
h  i^i  v )  C_  ( N  i^i  M
) ) )
1514an4s 802 . . . . . . . . . . 11  |-  ( ( ( S  C_  h  /\  h  C_  N )  /\  ( S  C_  v  /\  v  C_  M
) )  ->  ( S  C_  ( h  i^i  v )  /\  (
h  i^i  v )  C_  ( N  i^i  M
) ) )
16 sseq2 3121 . . . . . . . . . . . . 13  |-  ( g  =  ( h  i^i  v )  ->  ( S  C_  g  <->  S  C_  (
h  i^i  v )
) )
17 sseq1 3120 . . . . . . . . . . . . 13  |-  ( g  =  ( h  i^i  v )  ->  (
g  C_  ( N  i^i  M )  <->  ( h  i^i  v )  C_  ( N  i^i  M ) ) )
1816, 17anbi12d 694 . . . . . . . . . . . 12  |-  ( g  =  ( h  i^i  v )  ->  (
( S  C_  g  /\  g  C_  ( N  i^i  M ) )  <-> 
( S  C_  (
h  i^i  v )  /\  ( h  i^i  v
)  C_  ( N  i^i  M ) ) ) )
1918rcla4ev 2821 . . . . . . . . . . 11  |-  ( ( ( h  i^i  v
)  e.  J  /\  ( S  C_  ( h  i^i  v )  /\  ( h  i^i  v
)  C_  ( N  i^i  M ) ) )  ->  E. g  e.  J  ( S  C_  g  /\  g  C_  ( N  i^i  M ) ) )
2010, 15, 19syl2an 465 . . . . . . . . . 10  |-  ( ( ( ( J  e. 
Top  /\  h  e.  J )  /\  v  e.  J )  /\  (
( S  C_  h  /\  h  C_  N )  /\  ( S  C_  v  /\  v  C_  M
) ) )  ->  E. g  e.  J  ( S  C_  g  /\  g  C_  ( N  i^i  M ) ) )
2120expr 601 . . . . . . . . 9  |-  ( ( ( ( J  e. 
Top  /\  h  e.  J )  /\  v  e.  J )  /\  ( S  C_  h  /\  h  C_  N ) )  -> 
( ( S  C_  v  /\  v  C_  M
)  ->  E. g  e.  J  ( S  C_  g  /\  g  C_  ( N  i^i  M ) ) ) )
2221an32s 782 . . . . . . . 8  |-  ( ( ( ( J  e. 
Top  /\  h  e.  J )  /\  ( S  C_  h  /\  h  C_  N ) )  /\  v  e.  J )  ->  ( ( S  C_  v  /\  v  C_  M
)  ->  E. g  e.  J  ( S  C_  g  /\  g  C_  ( N  i^i  M ) ) ) )
2322rexlimdva 2629 . . . . . . 7  |-  ( ( ( J  e.  Top  /\  h  e.  J )  /\  ( S  C_  h  /\  h  C_  N
) )  ->  ( E. v  e.  J  ( S  C_  v  /\  v  C_  M )  ->  E. g  e.  J  ( S  C_  g  /\  g  C_  ( N  i^i  M ) ) ) )
2423ex 425 . . . . . 6  |-  ( ( J  e.  Top  /\  h  e.  J )  ->  ( ( S  C_  h  /\  h  C_  N
)  ->  ( E. v  e.  J  ( S  C_  v  /\  v  C_  M )  ->  E. g  e.  J  ( S  C_  g  /\  g  C_  ( N  i^i  M ) ) ) ) )
2524rexlimdva 2629 . . . . 5  |-  ( J  e.  Top  ->  ( E. h  e.  J  ( S  C_  h  /\  h  C_  N )  -> 
( E. v  e.  J  ( S  C_  v  /\  v  C_  M
)  ->  E. g  e.  J  ( S  C_  g  /\  g  C_  ( N  i^i  M ) ) ) ) )
2625imp32 424 . . . 4  |-  ( ( J  e.  Top  /\  ( E. h  e.  J  ( S  C_  h  /\  h  C_  N )  /\  E. v  e.  J  ( S  C_  v  /\  v  C_  M ) ) )  ->  E. g  e.  J  ( S  C_  g  /\  g  C_  ( N  i^i  M ) ) )
278, 26syldan 458 . . 3  |-  ( ( J  e.  Top  /\  ( N  e.  (
( nei `  J
) `  S )  /\  M  e.  (
( nei `  J
) `  S )
) )  ->  E. g  e.  J  ( S  C_  g  /\  g  C_  ( N  i^i  M ) ) )
28273impb 1152 . 2  |-  ( ( J  e.  Top  /\  N  e.  ( ( nei `  J ) `  S )  /\  M  e.  ( ( nei `  J
) `  S )
)  ->  E. g  e.  J  ( S  C_  g  /\  g  C_  ( N  i^i  M ) ) )
291neiss2 16670 . . . 4  |-  ( ( J  e.  Top  /\  N  e.  ( ( nei `  J ) `  S ) )  ->  S  C_  U. J )
301isnei 16672 . . . 4  |-  ( ( J  e.  Top  /\  S  C_  U. J )  ->  ( ( N  i^i  M )  e.  ( ( nei `  J
) `  S )  <->  ( ( N  i^i  M
)  C_  U. J  /\  E. g  e.  J  ( S  C_  g  /\  g  C_  ( N  i^i  M ) ) ) ) )
3129, 30syldan 458 . . 3  |-  ( ( J  e.  Top  /\  N  e.  ( ( nei `  J ) `  S ) )  -> 
( ( N  i^i  M )  e.  ( ( nei `  J ) `
 S )  <->  ( ( N  i^i  M )  C_  U. J  /\  E. g  e.  J  ( S  C_  g  /\  g  C_  ( N  i^i  M ) ) ) ) )
32313adant3 980 . 2  |-  ( ( J  e.  Top  /\  N  e.  ( ( nei `  J ) `  S )  /\  M  e.  ( ( nei `  J
) `  S )
)  ->  ( ( N  i^i  M )  e.  ( ( nei `  J
) `  S )  <->  ( ( N  i^i  M
)  C_  U. J  /\  E. g  e.  J  ( S  C_  g  /\  g  C_  ( N  i^i  M ) ) ) ) )
335, 28, 32mpbir2and 893 1  |-  ( ( J  e.  Top  /\  N  e.  ( ( nei `  J ) `  S )  /\  M  e.  ( ( nei `  J
) `  S )
)  ->  ( N  i^i  M )  e.  ( ( nei `  J
) `  S )
)
Colors of variables: wff set class
Syntax hints:    -> wi 6    <-> wb 178    /\ wa 360    /\ w3a 939    = wceq 1619    e. wcel 1621   E.wrex 2510    i^i cin 3077    C_ wss 3078   U.cuni 3727   ` cfv 4592   Topctop 16463   neicnei 16666
This theorem is referenced by:  neifil  17407  islimrs4  24748  neificl  25633
This theorem was proved from axioms:  ax-1 7  ax-2 8  ax-3 9  ax-mp 10  ax-5 1533  ax-6 1534  ax-7 1535  ax-gen 1536  ax-8 1623  ax-11 1624  ax-13 1625  ax-14 1626  ax-17 1628  ax-12o 1664  ax-10 1678  ax-9 1684  ax-4 1692  ax-16 1926  ax-ext 2234  ax-rep 4028  ax-sep 4038  ax-nul 4046  ax-pow 4082  ax-pr 4108  ax-un 4403
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3an 941  df-tru 1315  df-ex 1538  df-nf 1540  df-sb 1883  df-eu 2118  df-mo 2119  df-clab 2240  df-cleq 2246  df-clel 2249  df-nfc 2374  df-ne 2414  df-ral 2513  df-rex 2514  df-reu 2515  df-rab 2516  df-v 2729  df-sbc 2922  df-csb 3010  df-dif 3081  df-un 3083  df-in 3085  df-ss 3089  df-nul 3363  df-if 3471  df-pw 3532  df-sn 3550  df-pr 3551  df-op 3553  df-uni 3728  df-iun 3805  df-br 3921  df-opab 3975  df-mpt 3976  df-id 4202  df-xp 4594  df-rel 4595  df-cnv 4596  df-co 4597  df-dm 4598  df-rn 4599  df-res 4600  df-ima 4601  df-fun 4602  df-fn 4603  df-f 4604  df-f1 4605  df-fo 4606  df-f1o 4607  df-fv 4608  df-top 16468  df-nei 16667
  Copyright terms: Public domain W3C validator