Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  inf5 Unicode version

Theorem inf5 7230
 Description: The statement "there exists a set that is a proper subset of its union" is equivalent to the Axiom of Infinity (see theorem infeq5 7222). This provides us with a very compact way to express of the Axiom of Infinity using only elementary symbols. (Contributed by NM, 3-Jun-2005.)
Assertion
Ref Expression
inf5

Proof of Theorem inf5
StepHypRef Expression
1 omex 7228 . 2
2 infeq5i 7221 . 2
31, 2ax-mp 10 1
 Colors of variables: wff set class Syntax hints:  wex 1537   wcel 1621  cvv 2727   wpss 3079  cuni 3727  com 4547 This theorem was proved from axioms:  ax-1 7  ax-2 8  ax-3 9  ax-mp 10  ax-5 1533  ax-6 1534  ax-7 1535  ax-gen 1536  ax-8 1623  ax-11 1624  ax-13 1625  ax-14 1626  ax-17 1628  ax-12o 1664  ax-10 1678  ax-9 1684  ax-4 1692  ax-16 1926  ax-ext 2234  ax-sep 4038  ax-nul 4046  ax-pr 4108  ax-un 4403  ax-inf2 7226 This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3or 940  df-3an 941  df-tru 1315  df-ex 1538  df-nf 1540  df-sb 1883  df-eu 2118  df-mo 2119  df-clab 2240  df-cleq 2246  df-clel 2249  df-nfc 2374  df-ne 2414  df-ral 2513  df-rex 2514  df-rab 2516  df-v 2729  df-sbc 2922  df-dif 3081  df-un 3083  df-in 3085  df-ss 3089  df-pss 3091  df-nul 3363  df-if 3471  df-pw 3532  df-sn 3550  df-pr 3551  df-tp 3552  df-op 3553  df-uni 3728  df-br 3921  df-opab 3975  df-tr 4011  df-eprel 4198  df-po 4207  df-so 4208  df-fr 4245  df-we 4247  df-ord 4288  df-on 4289  df-lim 4290  df-suc 4291  df-om 4548
 Copyright terms: Public domain W3C validator