Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  inf1 Unicode version

Theorem inf1 7207
 Description: Variation of Axiom of Infinity (using zfinf 7224 as a hypothesis). Axiom of Infinity in [FreydScedrov] p. 283. (Contributed by NM, 14-Oct-1996.) (Revised by David Abernethy, 1-Oct-2013.)
Hypothesis
Ref Expression
inf1.1
Assertion
Ref Expression
inf1

Proof of Theorem inf1
StepHypRef Expression
1 inf1.1 . 2
2 ne0i 3368 . . . 4
32anim1i 554 . . 3
43eximi 1574 . 2
51, 4ax-mp 10 1
 Colors of variables: wff set class Syntax hints:   wi 6   wa 360  wal 1532  wex 1537   wcel 1621   wne 2412  c0 3362 This theorem is referenced by:  inf2  7208 This theorem was proved from axioms:  ax-1 7  ax-2 8  ax-3 9  ax-mp 10  ax-5 1533  ax-6 1534  ax-7 1535  ax-gen 1536  ax-8 1623  ax-11 1624  ax-17 1628  ax-12o 1664  ax-10 1678  ax-9 1684  ax-4 1692  ax-16 1926  ax-ext 2234 This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-tru 1315  df-ex 1538  df-nf 1540  df-sb 1883  df-clab 2240  df-cleq 2246  df-clel 2249  df-nfc 2374  df-ne 2414  df-v 2729  df-dif 3081  df-nul 3363
 Copyright terms: Public domain W3C validator