MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  incexc Unicode version

Theorem incexc 12393
Description: The inclusion/exclusion principle for counting the elements of a finite union of finite sets. (Contributed by Mario Carneiro, 7-Aug-2017.)
Assertion
Ref Expression
incexc  |-  ( ( A  e.  Fin  /\  A  C_  Fin )  -> 
( # `  U. A
)  =  sum_ s  e.  ( ~P A  \  { (/) } ) ( ( -u 1 ^ ( ( # `  s
)  -  1 ) )  x.  ( # `  |^| s ) ) )
Distinct variable group:    A, s

Proof of Theorem incexc
StepHypRef Expression
1 unifi 7235 . . 3  |-  ( ( A  e.  Fin  /\  A  C_  Fin )  ->  U. A  e.  Fin )
2 hashcl 11443 . . . 4  |-  ( U. A  e.  Fin  ->  ( # `
 U. A )  e.  NN0 )
32nn0cnd 10112 . . 3  |-  ( U. A  e.  Fin  ->  ( # `
 U. A )  e.  CC )
41, 3syl 15 . 2  |-  ( ( A  e.  Fin  /\  A  C_  Fin )  -> 
( # `  U. A
)  e.  CC )
5 simpl 443 . . . . 5  |-  ( ( A  e.  Fin  /\  A  C_  Fin )  ->  A  e.  Fin )
6 pwfi 7241 . . . . 5  |-  ( A  e.  Fin  <->  ~P A  e.  Fin )
75, 6sylib 188 . . . 4  |-  ( ( A  e.  Fin  /\  A  C_  Fin )  ->  ~P A  e.  Fin )
8 diffi 7179 . . . 4  |-  ( ~P A  e.  Fin  ->  ( ~P A  \  { (/)
} )  e.  Fin )
97, 8syl 15 . . 3  |-  ( ( A  e.  Fin  /\  A  C_  Fin )  -> 
( ~P A  \  { (/) } )  e. 
Fin )
10 ax-1cn 8885 . . . . . . 7  |-  1  e.  CC
1110a1i 10 . . . . . 6  |-  ( ( ( A  e.  Fin  /\  A  C_  Fin )  /\  s  e.  ( ~P A  \  { (/) } ) )  ->  1  e.  CC )
1211negcld 9234 . . . . 5  |-  ( ( ( A  e.  Fin  /\  A  C_  Fin )  /\  s  e.  ( ~P A  \  { (/) } ) )  ->  -u 1  e.  CC )
13 eldifsni 3826 . . . . . . . 8  |-  ( s  e.  ( ~P A  \  { (/) } )  -> 
s  =/=  (/) )
1413adantl 452 . . . . . . 7  |-  ( ( ( A  e.  Fin  /\  A  C_  Fin )  /\  s  e.  ( ~P A  \  { (/) } ) )  ->  s  =/=  (/) )
15 eldifi 3374 . . . . . . . . . 10  |-  ( s  e.  ( ~P A  \  { (/) } )  -> 
s  e.  ~P A
)
16 elpwi 3709 . . . . . . . . . 10  |-  ( s  e.  ~P A  -> 
s  C_  A )
1715, 16syl 15 . . . . . . . . 9  |-  ( s  e.  ( ~P A  \  { (/) } )  -> 
s  C_  A )
18 ssfi 7171 . . . . . . . . 9  |-  ( ( A  e.  Fin  /\  s  C_  A )  -> 
s  e.  Fin )
195, 17, 18syl2an 463 . . . . . . . 8  |-  ( ( ( A  e.  Fin  /\  A  C_  Fin )  /\  s  e.  ( ~P A  \  { (/) } ) )  ->  s  e.  Fin )
20 hashnncl 11447 . . . . . . . 8  |-  ( s  e.  Fin  ->  (
( # `  s )  e.  NN  <->  s  =/=  (/) ) )
2119, 20syl 15 . . . . . . 7  |-  ( ( ( A  e.  Fin  /\  A  C_  Fin )  /\  s  e.  ( ~P A  \  { (/) } ) )  ->  (
( # `  s )  e.  NN  <->  s  =/=  (/) ) )
2214, 21mpbird 223 . . . . . 6  |-  ( ( ( A  e.  Fin  /\  A  C_  Fin )  /\  s  e.  ( ~P A  \  { (/) } ) )  ->  ( # `
 s )  e.  NN )
23 nnm1nn0 10097 . . . . . 6  |-  ( (
# `  s )  e.  NN  ->  ( ( # `
 s )  - 
1 )  e.  NN0 )
2422, 23syl 15 . . . . 5  |-  ( ( ( A  e.  Fin  /\  A  C_  Fin )  /\  s  e.  ( ~P A  \  { (/) } ) )  ->  (
( # `  s )  -  1 )  e. 
NN0 )
2512, 24expcld 11338 . . . 4  |-  ( ( ( A  e.  Fin  /\  A  C_  Fin )  /\  s  e.  ( ~P A  \  { (/) } ) )  ->  ( -u 1 ^ ( (
# `  s )  -  1 ) )  e.  CC )
2617adantl 452 . . . . . . . . 9  |-  ( ( ( A  e.  Fin  /\  A  C_  Fin )  /\  s  e.  ( ~P A  \  { (/) } ) )  ->  s  C_  A )
27 simplr 731 . . . . . . . . 9  |-  ( ( ( A  e.  Fin  /\  A  C_  Fin )  /\  s  e.  ( ~P A  \  { (/) } ) )  ->  A  C_ 
Fin )
2826, 27sstrd 3265 . . . . . . . 8  |-  ( ( ( A  e.  Fin  /\  A  C_  Fin )  /\  s  e.  ( ~P A  \  { (/) } ) )  ->  s  C_ 
Fin )
29 unifi 7235 . . . . . . . 8  |-  ( ( s  e.  Fin  /\  s  C_  Fin )  ->  U. s  e.  Fin )
3019, 28, 29syl2anc 642 . . . . . . 7  |-  ( ( ( A  e.  Fin  /\  A  C_  Fin )  /\  s  e.  ( ~P A  \  { (/) } ) )  ->  U. s  e.  Fin )
31 intssuni 3965 . . . . . . . 8  |-  ( s  =/=  (/)  ->  |^| s  C_  U. s )
3214, 31syl 15 . . . . . . 7  |-  ( ( ( A  e.  Fin  /\  A  C_  Fin )  /\  s  e.  ( ~P A  \  { (/) } ) )  ->  |^| s  C_ 
U. s )
33 ssfi 7171 . . . . . . 7  |-  ( ( U. s  e.  Fin  /\ 
|^| s  C_  U. s
)  ->  |^| s  e. 
Fin )
3430, 32, 33syl2anc 642 . . . . . 6  |-  ( ( ( A  e.  Fin  /\  A  C_  Fin )  /\  s  e.  ( ~P A  \  { (/) } ) )  ->  |^| s  e.  Fin )
35 hashcl 11443 . . . . . 6  |-  ( |^| s  e.  Fin  ->  ( # `
 |^| s )  e. 
NN0 )
3634, 35syl 15 . . . . 5  |-  ( ( ( A  e.  Fin  /\  A  C_  Fin )  /\  s  e.  ( ~P A  \  { (/) } ) )  ->  ( # `
 |^| s )  e. 
NN0 )
3736nn0cnd 10112 . . . 4  |-  ( ( ( A  e.  Fin  /\  A  C_  Fin )  /\  s  e.  ( ~P A  \  { (/) } ) )  ->  ( # `
 |^| s )  e.  CC )
3825, 37mulcld 8945 . . 3  |-  ( ( ( A  e.  Fin  /\  A  C_  Fin )  /\  s  e.  ( ~P A  \  { (/) } ) )  ->  (
( -u 1 ^ (
( # `  s )  -  1 ) )  x.  ( # `  |^| s ) )  e.  CC )
399, 38fsumcl 12303 . 2  |-  ( ( A  e.  Fin  /\  A  C_  Fin )  ->  sum_ s  e.  ( ~P A  \  { (/) } ) ( ( -u
1 ^ ( (
# `  s )  -  1 ) )  x.  ( # `  |^| s ) )  e.  CC )
40 disjdif 3602 . . . . 5  |-  ( {
(/) }  i^i  ( ~P A  \  { (/) } ) )  =  (/)
4140a1i 10 . . . 4  |-  ( ( A  e.  Fin  /\  A  C_  Fin )  -> 
( { (/) }  i^i  ( ~P A  \  { (/)
} ) )  =  (/) )
42 0elpw 4261 . . . . . . . 8  |-  (/)  e.  ~P A
43 snssi 3838 . . . . . . . 8  |-  ( (/)  e.  ~P A  ->  { (/) } 
C_  ~P A )
4442, 43ax-mp 8 . . . . . . 7  |-  { (/) } 
C_  ~P A
45 undif 3610 . . . . . . 7  |-  ( {
(/) }  C_  ~P A  <->  ( { (/) }  u.  ( ~P A  \  { (/) } ) )  =  ~P A )
4644, 45mpbi 199 . . . . . 6  |-  ( {
(/) }  u.  ( ~P A  \  { (/) } ) )  =  ~P A
4746eqcomi 2362 . . . . 5  |-  ~P A  =  ( { (/) }  u.  ( ~P A  \  { (/) } ) )
4847a1i 10 . . . 4  |-  ( ( A  e.  Fin  /\  A  C_  Fin )  ->  ~P A  =  ( { (/) }  u.  ( ~P A  \  { (/) } ) ) )
4910a1i 10 . . . . . . 7  |-  ( ( ( A  e.  Fin  /\  A  C_  Fin )  /\  s  e.  ~P A )  ->  1  e.  CC )
5049negcld 9234 . . . . . 6  |-  ( ( ( A  e.  Fin  /\  A  C_  Fin )  /\  s  e.  ~P A )  ->  -u 1  e.  CC )
515, 16, 18syl2an 463 . . . . . . 7  |-  ( ( ( A  e.  Fin  /\  A  C_  Fin )  /\  s  e.  ~P A )  ->  s  e.  Fin )
52 hashcl 11443 . . . . . . 7  |-  ( s  e.  Fin  ->  ( # `
 s )  e. 
NN0 )
5351, 52syl 15 . . . . . 6  |-  ( ( ( A  e.  Fin  /\  A  C_  Fin )  /\  s  e.  ~P A )  ->  ( # `
 s )  e. 
NN0 )
5450, 53expcld 11338 . . . . 5  |-  ( ( ( A  e.  Fin  /\  A  C_  Fin )  /\  s  e.  ~P A )  ->  ( -u 1 ^ ( # `  s ) )  e.  CC )
551adantr 451 . . . . . . . 8  |-  ( ( ( A  e.  Fin  /\  A  C_  Fin )  /\  s  e.  ~P A )  ->  U. A  e.  Fin )
56 inss1 3465 . . . . . . . 8  |-  ( U. A  i^i  |^| s )  C_  U. A
57 ssfi 7171 . . . . . . . 8  |-  ( ( U. A  e.  Fin  /\  ( U. A  i^i  |^| s )  C_  U. A
)  ->  ( U. A  i^i  |^| s )  e. 
Fin )
5855, 56, 57sylancl 643 . . . . . . 7  |-  ( ( ( A  e.  Fin  /\  A  C_  Fin )  /\  s  e.  ~P A )  ->  ( U. A  i^i  |^| s
)  e.  Fin )
59 hashcl 11443 . . . . . . 7  |-  ( ( U. A  i^i  |^| s )  e.  Fin  ->  ( # `  ( U. A  i^i  |^| s
) )  e.  NN0 )
6058, 59syl 15 . . . . . 6  |-  ( ( ( A  e.  Fin  /\  A  C_  Fin )  /\  s  e.  ~P A )  ->  ( # `
 ( U. A  i^i  |^| s ) )  e.  NN0 )
6160nn0cnd 10112 . . . . 5  |-  ( ( ( A  e.  Fin  /\  A  C_  Fin )  /\  s  e.  ~P A )  ->  ( # `
 ( U. A  i^i  |^| s ) )  e.  CC )
6254, 61mulcld 8945 . . . 4  |-  ( ( ( A  e.  Fin  /\  A  C_  Fin )  /\  s  e.  ~P A )  ->  (
( -u 1 ^ ( # `
 s ) )  x.  ( # `  ( U. A  i^i  |^| s
) ) )  e.  CC )
6341, 48, 7, 62fsumsplit 12309 . . 3  |-  ( ( A  e.  Fin  /\  A  C_  Fin )  ->  sum_ s  e.  ~P  A
( ( -u 1 ^ ( # `  s
) )  x.  ( # `
 ( U. A  i^i  |^| s ) ) )  =  ( sum_ s  e.  { (/) }  (
( -u 1 ^ ( # `
 s ) )  x.  ( # `  ( U. A  i^i  |^| s
) ) )  + 
sum_ s  e.  ( ~P A  \  { (/)
} ) ( (
-u 1 ^ ( # `
 s ) )  x.  ( # `  ( U. A  i^i  |^| s
) ) ) ) )
64 inidm 3454 . . . . . . 7  |-  ( U. A  i^i  U. A )  =  U. A
6564fveq2i 5611 . . . . . 6  |-  ( # `  ( U. A  i^i  U. A ) )  =  ( # `  U. A )
6665oveq2i 5956 . . . . 5  |-  ( (
# `  U. A )  -  ( # `  ( U. A  i^i  U. A
) ) )  =  ( ( # `  U. A )  -  ( # `
 U. A ) )
674subidd 9235 . . . . 5  |-  ( ( A  e.  Fin  /\  A  C_  Fin )  -> 
( ( # `  U. A )  -  ( # `
 U. A ) )  =  0 )
6866, 67syl5eq 2402 . . . 4  |-  ( ( A  e.  Fin  /\  A  C_  Fin )  -> 
( ( # `  U. A )  -  ( # `
 ( U. A  i^i  U. A ) ) )  =  0 )
69 incexclem 12392 . . . . 5  |-  ( ( A  e.  Fin  /\  U. A  e.  Fin )  ->  ( ( # `  U. A )  -  ( # `
 ( U. A  i^i  U. A ) ) )  =  sum_ s  e.  ~P  A ( (
-u 1 ^ ( # `
 s ) )  x.  ( # `  ( U. A  i^i  |^| s
) ) ) )
701, 69syldan 456 . . . 4  |-  ( ( A  e.  Fin  /\  A  C_  Fin )  -> 
( ( # `  U. A )  -  ( # `
 ( U. A  i^i  U. A ) ) )  =  sum_ s  e.  ~P  A ( (
-u 1 ^ ( # `
 s ) )  x.  ( # `  ( U. A  i^i  |^| s
) ) ) )
7168, 70eqtr3d 2392 . . 3  |-  ( ( A  e.  Fin  /\  A  C_  Fin )  -> 
0  =  sum_ s  e.  ~P  A ( (
-u 1 ^ ( # `
 s ) )  x.  ( # `  ( U. A  i^i  |^| s
) ) ) )
724, 39negsubd 9253 . . . 4  |-  ( ( A  e.  Fin  /\  A  C_  Fin )  -> 
( ( # `  U. A )  +  -u sum_ s  e.  ( ~P A  \  { (/) } ) ( ( -u
1 ^ ( (
# `  s )  -  1 ) )  x.  ( # `  |^| s ) ) )  =  ( ( # `  U. A )  -  sum_ s  e.  ( ~P A  \  { (/) } ) ( ( -u
1 ^ ( (
# `  s )  -  1 ) )  x.  ( # `  |^| s ) ) ) )
73 0ex 4231 . . . . . . 7  |-  (/)  e.  _V
7410a1i 10 . . . . . . . 8  |-  ( ( A  e.  Fin  /\  A  C_  Fin )  -> 
1  e.  CC )
7574, 4mulcld 8945 . . . . . . 7  |-  ( ( A  e.  Fin  /\  A  C_  Fin )  -> 
( 1  x.  ( # `
 U. A ) )  e.  CC )
76 fveq2 5608 . . . . . . . . . . . 12  |-  ( s  =  (/)  ->  ( # `  s )  =  (
# `  (/) ) )
77 hash0 11448 . . . . . . . . . . . 12  |-  ( # `  (/) )  =  0
7876, 77syl6eq 2406 . . . . . . . . . . 11  |-  ( s  =  (/)  ->  ( # `  s )  =  0 )
7978oveq2d 5961 . . . . . . . . . 10  |-  ( s  =  (/)  ->  ( -u
1 ^ ( # `  s ) )  =  ( -u 1 ^ 0 ) )
8010negcli 9204 . . . . . . . . . . 11  |-  -u 1  e.  CC
81 exp0 11201 . . . . . . . . . . 11  |-  ( -u
1  e.  CC  ->  (
-u 1 ^ 0 )  =  1 )
8280, 81ax-mp 8 . . . . . . . . . 10  |-  ( -u
1 ^ 0 )  =  1
8379, 82syl6eq 2406 . . . . . . . . 9  |-  ( s  =  (/)  ->  ( -u
1 ^ ( # `  s ) )  =  1 )
84 ssv 3274 . . . . . . . . . . . 12  |-  U. A  C_ 
_V
85 inteq 3946 . . . . . . . . . . . . 13  |-  ( s  =  (/)  ->  |^| s  =  |^| (/) )
86 int0 3957 . . . . . . . . . . . . 13  |-  |^| (/)  =  _V
8785, 86syl6eq 2406 . . . . . . . . . . . 12  |-  ( s  =  (/)  ->  |^| s  =  _V )
8884, 87syl5sseqr 3303 . . . . . . . . . . 11  |-  ( s  =  (/)  ->  U. A  C_ 
|^| s )
89 df-ss 3242 . . . . . . . . . . 11  |-  ( U. A  C_  |^| s  <->  ( U. A  i^i  |^| s )  = 
U. A )
9088, 89sylib 188 . . . . . . . . . 10  |-  ( s  =  (/)  ->  ( U. A  i^i  |^| s )  = 
U. A )
9190fveq2d 5612 . . . . . . . . 9  |-  ( s  =  (/)  ->  ( # `  ( U. A  i^i  |^| s ) )  =  ( # `  U. A ) )
9283, 91oveq12d 5963 . . . . . . . 8  |-  ( s  =  (/)  ->  ( (
-u 1 ^ ( # `
 s ) )  x.  ( # `  ( U. A  i^i  |^| s
) ) )  =  ( 1  x.  ( # `
 U. A ) ) )
9392sumsn 12310 . . . . . . 7  |-  ( (
(/)  e.  _V  /\  (
1  x.  ( # `  U. A ) )  e.  CC )  ->  sum_ s  e.  { (/) }  ( ( -u 1 ^ ( # `  s
) )  x.  ( # `
 ( U. A  i^i  |^| s ) ) )  =  ( 1  x.  ( # `  U. A ) ) )
9473, 75, 93sylancr 644 . . . . . 6  |-  ( ( A  e.  Fin  /\  A  C_  Fin )  ->  sum_ s  e.  { (/) }  ( ( -u 1 ^ ( # `  s
) )  x.  ( # `
 ( U. A  i^i  |^| s ) ) )  =  ( 1  x.  ( # `  U. A ) ) )
954mulid2d 8943 . . . . . 6  |-  ( ( A  e.  Fin  /\  A  C_  Fin )  -> 
( 1  x.  ( # `
 U. A ) )  =  ( # `  U. A ) )
9694, 95eqtr2d 2391 . . . . 5  |-  ( ( A  e.  Fin  /\  A  C_  Fin )  -> 
( # `  U. A
)  =  sum_ s  e.  { (/) }  ( (
-u 1 ^ ( # `
 s ) )  x.  ( # `  ( U. A  i^i  |^| s
) ) ) )
979, 38fsumneg 12346 . . . . . 6  |-  ( ( A  e.  Fin  /\  A  C_  Fin )  ->  sum_ s  e.  ( ~P A  \  { (/) } ) -u ( (
-u 1 ^ (
( # `  s )  -  1 ) )  x.  ( # `  |^| s ) )  = 
-u sum_ s  e.  ( ~P A  \  { (/)
} ) ( (
-u 1 ^ (
( # `  s )  -  1 ) )  x.  ( # `  |^| s ) ) )
98 expm1t 11223 . . . . . . . . . . 11  |-  ( (
-u 1  e.  CC  /\  ( # `  s
)  e.  NN )  ->  ( -u 1 ^ ( # `  s
) )  =  ( ( -u 1 ^ ( ( # `  s
)  -  1 ) )  x.  -u 1
) )
9912, 22, 98syl2anc 642 . . . . . . . . . 10  |-  ( ( ( A  e.  Fin  /\  A  C_  Fin )  /\  s  e.  ( ~P A  \  { (/) } ) )  ->  ( -u 1 ^ ( # `  s ) )  =  ( ( -u 1 ^ ( ( # `  s )  -  1 ) )  x.  -u 1
) )
10025, 12mulcomd 8946 . . . . . . . . . 10  |-  ( ( ( A  e.  Fin  /\  A  C_  Fin )  /\  s  e.  ( ~P A  \  { (/) } ) )  ->  (
( -u 1 ^ (
( # `  s )  -  1 ) )  x.  -u 1 )  =  ( -u 1  x.  ( -u 1 ^ ( ( # `  s
)  -  1 ) ) ) )
10125mulm1d 9321 . . . . . . . . . 10  |-  ( ( ( A  e.  Fin  /\  A  C_  Fin )  /\  s  e.  ( ~P A  \  { (/) } ) )  ->  ( -u 1  x.  ( -u
1 ^ ( (
# `  s )  -  1 ) ) )  =  -u ( -u 1 ^ ( (
# `  s )  -  1 ) ) )
10299, 100, 1013eqtrd 2394 . . . . . . . . 9  |-  ( ( ( A  e.  Fin  /\  A  C_  Fin )  /\  s  e.  ( ~P A  \  { (/) } ) )  ->  ( -u 1 ^ ( # `  s ) )  = 
-u ( -u 1 ^ ( ( # `  s )  -  1 ) ) )
10326unissd 3932 . . . . . . . . . . . 12  |-  ( ( ( A  e.  Fin  /\  A  C_  Fin )  /\  s  e.  ( ~P A  \  { (/) } ) )  ->  U. s  C_ 
U. A )
10432, 103sstrd 3265 . . . . . . . . . . 11  |-  ( ( ( A  e.  Fin  /\  A  C_  Fin )  /\  s  e.  ( ~P A  \  { (/) } ) )  ->  |^| s  C_ 
U. A )
105 dfss1 3449 . . . . . . . . . . 11  |-  ( |^| s  C_  U. A  <->  ( U. A  i^i  |^| s )  = 
|^| s )
106104, 105sylib 188 . . . . . . . . . 10  |-  ( ( ( A  e.  Fin  /\  A  C_  Fin )  /\  s  e.  ( ~P A  \  { (/) } ) )  ->  ( U. A  i^i  |^| s
)  =  |^| s
)
107106fveq2d 5612 . . . . . . . . 9  |-  ( ( ( A  e.  Fin  /\  A  C_  Fin )  /\  s  e.  ( ~P A  \  { (/) } ) )  ->  ( # `
 ( U. A  i^i  |^| s ) )  =  ( # `  |^| s ) )
108102, 107oveq12d 5963 . . . . . . . 8  |-  ( ( ( A  e.  Fin  /\  A  C_  Fin )  /\  s  e.  ( ~P A  \  { (/) } ) )  ->  (
( -u 1 ^ ( # `
 s ) )  x.  ( # `  ( U. A  i^i  |^| s
) ) )  =  ( -u ( -u
1 ^ ( (
# `  s )  -  1 ) )  x.  ( # `  |^| s ) ) )
10925, 37mulneg1d 9322 . . . . . . . 8  |-  ( ( ( A  e.  Fin  /\  A  C_  Fin )  /\  s  e.  ( ~P A  \  { (/) } ) )  ->  ( -u ( -u 1 ^ ( ( # `  s
)  -  1 ) )  x.  ( # `  |^| s ) )  =  -u ( ( -u
1 ^ ( (
# `  s )  -  1 ) )  x.  ( # `  |^| s ) ) )
110108, 109eqtr2d 2391 . . . . . . 7  |-  ( ( ( A  e.  Fin  /\  A  C_  Fin )  /\  s  e.  ( ~P A  \  { (/) } ) )  ->  -u (
( -u 1 ^ (
( # `  s )  -  1 ) )  x.  ( # `  |^| s ) )  =  ( ( -u 1 ^ ( # `  s
) )  x.  ( # `
 ( U. A  i^i  |^| s ) ) ) )
111110sumeq2dv 12273 . . . . . 6  |-  ( ( A  e.  Fin  /\  A  C_  Fin )  ->  sum_ s  e.  ( ~P A  \  { (/) } ) -u ( (
-u 1 ^ (
( # `  s )  -  1 ) )  x.  ( # `  |^| s ) )  = 
sum_ s  e.  ( ~P A  \  { (/)
} ) ( (
-u 1 ^ ( # `
 s ) )  x.  ( # `  ( U. A  i^i  |^| s
) ) ) )
11297, 111eqtr3d 2392 . . . . 5  |-  ( ( A  e.  Fin  /\  A  C_  Fin )  ->  -u
sum_ s  e.  ( ~P A  \  { (/)
} ) ( (
-u 1 ^ (
( # `  s )  -  1 ) )  x.  ( # `  |^| s ) )  = 
sum_ s  e.  ( ~P A  \  { (/)
} ) ( (
-u 1 ^ ( # `
 s ) )  x.  ( # `  ( U. A  i^i  |^| s
) ) ) )
11396, 112oveq12d 5963 . . . 4  |-  ( ( A  e.  Fin  /\  A  C_  Fin )  -> 
( ( # `  U. A )  +  -u sum_ s  e.  ( ~P A  \  { (/) } ) ( ( -u
1 ^ ( (
# `  s )  -  1 ) )  x.  ( # `  |^| s ) ) )  =  ( sum_ s  e.  { (/) }  ( (
-u 1 ^ ( # `
 s ) )  x.  ( # `  ( U. A  i^i  |^| s
) ) )  + 
sum_ s  e.  ( ~P A  \  { (/)
} ) ( (
-u 1 ^ ( # `
 s ) )  x.  ( # `  ( U. A  i^i  |^| s
) ) ) ) )
11472, 113eqtr3d 2392 . . 3  |-  ( ( A  e.  Fin  /\  A  C_  Fin )  -> 
( ( # `  U. A )  -  sum_ s  e.  ( ~P A  \  { (/) } ) ( ( -u 1 ^ ( ( # `  s )  -  1 ) )  x.  ( # `
 |^| s ) ) )  =  ( sum_ s  e.  { (/) }  (
( -u 1 ^ ( # `
 s ) )  x.  ( # `  ( U. A  i^i  |^| s
) ) )  + 
sum_ s  e.  ( ~P A  \  { (/)
} ) ( (
-u 1 ^ ( # `
 s ) )  x.  ( # `  ( U. A  i^i  |^| s
) ) ) ) )
11563, 71, 1143eqtr4rd 2401 . 2  |-  ( ( A  e.  Fin  /\  A  C_  Fin )  -> 
( ( # `  U. A )  -  sum_ s  e.  ( ~P A  \  { (/) } ) ( ( -u 1 ^ ( ( # `  s )  -  1 ) )  x.  ( # `
 |^| s ) ) )  =  0 )
1164, 39, 115subeq0d 9255 1  |-  ( ( A  e.  Fin  /\  A  C_  Fin )  -> 
( # `  U. A
)  =  sum_ s  e.  ( ~P A  \  { (/) } ) ( ( -u 1 ^ ( ( # `  s
)  -  1 ) )  x.  ( # `  |^| s ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 176    /\ wa 358    = wceq 1642    e. wcel 1710    =/= wne 2521   _Vcvv 2864    \ cdif 3225    u. cun 3226    i^i cin 3227    C_ wss 3228   (/)c0 3531   ~Pcpw 3701   {csn 3716   U.cuni 3908   |^|cint 3943   ` cfv 5337  (class class class)co 5945   Fincfn 6951   CCcc 8825   0cc0 8827   1c1 8828    + caddc 8830    x. cmul 8832    - cmin 9127   -ucneg 9128   NNcn 9836   NN0cn0 10057   ^cexp 11197   #chash 11430   sum_csu 12255
This theorem is referenced by:  incexc2  12394
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1546  ax-5 1557  ax-17 1616  ax-9 1654  ax-8 1675  ax-13 1712  ax-14 1714  ax-6 1729  ax-7 1734  ax-11 1746  ax-12 1930  ax-ext 2339  ax-rep 4212  ax-sep 4222  ax-nul 4230  ax-pow 4269  ax-pr 4295  ax-un 4594  ax-inf2 7432  ax-cnex 8883  ax-resscn 8884  ax-1cn 8885  ax-icn 8886  ax-addcl 8887  ax-addrcl 8888  ax-mulcl 8889  ax-mulrcl 8890  ax-mulcom 8891  ax-addass 8892  ax-mulass 8893  ax-distr 8894  ax-i2m1 8895  ax-1ne0 8896  ax-1rid 8897  ax-rnegex 8898  ax-rrecex 8899  ax-cnre 8900  ax-pre-lttri 8901  ax-pre-lttrn 8902  ax-pre-ltadd 8903  ax-pre-mulgt0 8904  ax-pre-sup 8905
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1319  df-ex 1542  df-nf 1545  df-sb 1649  df-eu 2213  df-mo 2214  df-clab 2345  df-cleq 2351  df-clel 2354  df-nfc 2483  df-ne 2523  df-nel 2524  df-ral 2624  df-rex 2625  df-reu 2626  df-rmo 2627  df-rab 2628  df-v 2866  df-sbc 3068  df-csb 3158  df-dif 3231  df-un 3233  df-in 3235  df-ss 3242  df-pss 3244  df-nul 3532  df-if 3642  df-pw 3703  df-sn 3722  df-pr 3723  df-tp 3724  df-op 3725  df-uni 3909  df-int 3944  df-iun 3988  df-br 4105  df-opab 4159  df-mpt 4160  df-tr 4195  df-eprel 4387  df-id 4391  df-po 4396  df-so 4397  df-fr 4434  df-se 4435  df-we 4436  df-ord 4477  df-on 4478  df-lim 4479  df-suc 4480  df-om 4739  df-xp 4777  df-rel 4778  df-cnv 4779  df-co 4780  df-dm 4781  df-rn 4782  df-res 4783  df-ima 4784  df-iota 5301  df-fun 5339  df-fn 5340  df-f 5341  df-f1 5342  df-fo 5343  df-f1o 5344  df-fv 5345  df-isom 5346  df-ov 5948  df-oprab 5949  df-mpt2 5950  df-1st 6209  df-2nd 6210  df-riota 6391  df-recs 6475  df-rdg 6510  df-1o 6566  df-2o 6567  df-oadd 6570  df-er 6747  df-map 6862  df-en 6952  df-dom 6953  df-sdom 6954  df-fin 6955  df-sup 7284  df-oi 7315  df-card 7662  df-cda 7884  df-pnf 8959  df-mnf 8960  df-xr 8961  df-ltxr 8962  df-le 8963  df-sub 9129  df-neg 9130  df-div 9514  df-nn 9837  df-2 9894  df-3 9895  df-n0 10058  df-z 10117  df-uz 10323  df-rp 10447  df-fz 10875  df-fzo 10963  df-seq 11139  df-exp 11198  df-hash 11431  df-cj 11680  df-re 11681  df-im 11682  df-sqr 11816  df-abs 11817  df-clim 12058  df-sum 12256
  Copyright terms: Public domain W3C validator