MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  incexc Unicode version

Theorem incexc 12572
Description: The inclusion/exclusion principle for counting the elements of a finite union of finite sets. (Contributed by Mario Carneiro, 7-Aug-2017.)
Assertion
Ref Expression
incexc  |-  ( ( A  e.  Fin  /\  A  C_  Fin )  -> 
( # `  U. A
)  =  sum_ s  e.  ( ~P A  \  { (/) } ) ( ( -u 1 ^ ( ( # `  s
)  -  1 ) )  x.  ( # `  |^| s ) ) )
Distinct variable group:    A, s

Proof of Theorem incexc
StepHypRef Expression
1 unifi 7354 . . 3  |-  ( ( A  e.  Fin  /\  A  C_  Fin )  ->  U. A  e.  Fin )
2 hashcl 11594 . . . 4  |-  ( U. A  e.  Fin  ->  ( # `
 U. A )  e.  NN0 )
32nn0cnd 10232 . . 3  |-  ( U. A  e.  Fin  ->  ( # `
 U. A )  e.  CC )
41, 3syl 16 . 2  |-  ( ( A  e.  Fin  /\  A  C_  Fin )  -> 
( # `  U. A
)  e.  CC )
5 simpl 444 . . . . 5  |-  ( ( A  e.  Fin  /\  A  C_  Fin )  ->  A  e.  Fin )
6 pwfi 7360 . . . . 5  |-  ( A  e.  Fin  <->  ~P A  e.  Fin )
75, 6sylib 189 . . . 4  |-  ( ( A  e.  Fin  /\  A  C_  Fin )  ->  ~P A  e.  Fin )
8 diffi 7298 . . . 4  |-  ( ~P A  e.  Fin  ->  ( ~P A  \  { (/)
} )  e.  Fin )
97, 8syl 16 . . 3  |-  ( ( A  e.  Fin  /\  A  C_  Fin )  -> 
( ~P A  \  { (/) } )  e. 
Fin )
10 ax-1cn 9004 . . . . . . 7  |-  1  e.  CC
1110a1i 11 . . . . . 6  |-  ( ( ( A  e.  Fin  /\  A  C_  Fin )  /\  s  e.  ( ~P A  \  { (/) } ) )  ->  1  e.  CC )
1211negcld 9354 . . . . 5  |-  ( ( ( A  e.  Fin  /\  A  C_  Fin )  /\  s  e.  ( ~P A  \  { (/) } ) )  ->  -u 1  e.  CC )
13 eldifsni 3888 . . . . . . . 8  |-  ( s  e.  ( ~P A  \  { (/) } )  -> 
s  =/=  (/) )
1413adantl 453 . . . . . . 7  |-  ( ( ( A  e.  Fin  /\  A  C_  Fin )  /\  s  e.  ( ~P A  \  { (/) } ) )  ->  s  =/=  (/) )
15 eldifi 3429 . . . . . . . . . 10  |-  ( s  e.  ( ~P A  \  { (/) } )  -> 
s  e.  ~P A
)
16 elpwi 3767 . . . . . . . . . 10  |-  ( s  e.  ~P A  -> 
s  C_  A )
1715, 16syl 16 . . . . . . . . 9  |-  ( s  e.  ( ~P A  \  { (/) } )  -> 
s  C_  A )
18 ssfi 7288 . . . . . . . . 9  |-  ( ( A  e.  Fin  /\  s  C_  A )  -> 
s  e.  Fin )
195, 17, 18syl2an 464 . . . . . . . 8  |-  ( ( ( A  e.  Fin  /\  A  C_  Fin )  /\  s  e.  ( ~P A  \  { (/) } ) )  ->  s  e.  Fin )
20 hashnncl 11600 . . . . . . . 8  |-  ( s  e.  Fin  ->  (
( # `  s )  e.  NN  <->  s  =/=  (/) ) )
2119, 20syl 16 . . . . . . 7  |-  ( ( ( A  e.  Fin  /\  A  C_  Fin )  /\  s  e.  ( ~P A  \  { (/) } ) )  ->  (
( # `  s )  e.  NN  <->  s  =/=  (/) ) )
2214, 21mpbird 224 . . . . . 6  |-  ( ( ( A  e.  Fin  /\  A  C_  Fin )  /\  s  e.  ( ~P A  \  { (/) } ) )  ->  ( # `
 s )  e.  NN )
23 nnm1nn0 10217 . . . . . 6  |-  ( (
# `  s )  e.  NN  ->  ( ( # `
 s )  - 
1 )  e.  NN0 )
2422, 23syl 16 . . . . 5  |-  ( ( ( A  e.  Fin  /\  A  C_  Fin )  /\  s  e.  ( ~P A  \  { (/) } ) )  ->  (
( # `  s )  -  1 )  e. 
NN0 )
2512, 24expcld 11478 . . . 4  |-  ( ( ( A  e.  Fin  /\  A  C_  Fin )  /\  s  e.  ( ~P A  \  { (/) } ) )  ->  ( -u 1 ^ ( (
# `  s )  -  1 ) )  e.  CC )
2617adantl 453 . . . . . . . . 9  |-  ( ( ( A  e.  Fin  /\  A  C_  Fin )  /\  s  e.  ( ~P A  \  { (/) } ) )  ->  s  C_  A )
27 simplr 732 . . . . . . . . 9  |-  ( ( ( A  e.  Fin  /\  A  C_  Fin )  /\  s  e.  ( ~P A  \  { (/) } ) )  ->  A  C_ 
Fin )
2826, 27sstrd 3318 . . . . . . . 8  |-  ( ( ( A  e.  Fin  /\  A  C_  Fin )  /\  s  e.  ( ~P A  \  { (/) } ) )  ->  s  C_ 
Fin )
29 unifi 7354 . . . . . . . 8  |-  ( ( s  e.  Fin  /\  s  C_  Fin )  ->  U. s  e.  Fin )
3019, 28, 29syl2anc 643 . . . . . . 7  |-  ( ( ( A  e.  Fin  /\  A  C_  Fin )  /\  s  e.  ( ~P A  \  { (/) } ) )  ->  U. s  e.  Fin )
31 intssuni 4032 . . . . . . . 8  |-  ( s  =/=  (/)  ->  |^| s  C_  U. s )
3214, 31syl 16 . . . . . . 7  |-  ( ( ( A  e.  Fin  /\  A  C_  Fin )  /\  s  e.  ( ~P A  \  { (/) } ) )  ->  |^| s  C_ 
U. s )
33 ssfi 7288 . . . . . . 7  |-  ( ( U. s  e.  Fin  /\ 
|^| s  C_  U. s
)  ->  |^| s  e. 
Fin )
3430, 32, 33syl2anc 643 . . . . . 6  |-  ( ( ( A  e.  Fin  /\  A  C_  Fin )  /\  s  e.  ( ~P A  \  { (/) } ) )  ->  |^| s  e.  Fin )
35 hashcl 11594 . . . . . 6  |-  ( |^| s  e.  Fin  ->  ( # `
 |^| s )  e. 
NN0 )
3634, 35syl 16 . . . . 5  |-  ( ( ( A  e.  Fin  /\  A  C_  Fin )  /\  s  e.  ( ~P A  \  { (/) } ) )  ->  ( # `
 |^| s )  e. 
NN0 )
3736nn0cnd 10232 . . . 4  |-  ( ( ( A  e.  Fin  /\  A  C_  Fin )  /\  s  e.  ( ~P A  \  { (/) } ) )  ->  ( # `
 |^| s )  e.  CC )
3825, 37mulcld 9064 . . 3  |-  ( ( ( A  e.  Fin  /\  A  C_  Fin )  /\  s  e.  ( ~P A  \  { (/) } ) )  ->  (
( -u 1 ^ (
( # `  s )  -  1 ) )  x.  ( # `  |^| s ) )  e.  CC )
399, 38fsumcl 12482 . 2  |-  ( ( A  e.  Fin  /\  A  C_  Fin )  ->  sum_ s  e.  ( ~P A  \  { (/) } ) ( ( -u
1 ^ ( (
# `  s )  -  1 ) )  x.  ( # `  |^| s ) )  e.  CC )
40 disjdif 3660 . . . . 5  |-  ( {
(/) }  i^i  ( ~P A  \  { (/) } ) )  =  (/)
4140a1i 11 . . . 4  |-  ( ( A  e.  Fin  /\  A  C_  Fin )  -> 
( { (/) }  i^i  ( ~P A  \  { (/)
} ) )  =  (/) )
42 0elpw 4329 . . . . . . . 8  |-  (/)  e.  ~P A
43 snssi 3902 . . . . . . . 8  |-  ( (/)  e.  ~P A  ->  { (/) } 
C_  ~P A )
4442, 43ax-mp 8 . . . . . . 7  |-  { (/) } 
C_  ~P A
45 undif 3668 . . . . . . 7  |-  ( {
(/) }  C_  ~P A  <->  ( { (/) }  u.  ( ~P A  \  { (/) } ) )  =  ~P A )
4644, 45mpbi 200 . . . . . 6  |-  ( {
(/) }  u.  ( ~P A  \  { (/) } ) )  =  ~P A
4746eqcomi 2408 . . . . 5  |-  ~P A  =  ( { (/) }  u.  ( ~P A  \  { (/) } ) )
4847a1i 11 . . . 4  |-  ( ( A  e.  Fin  /\  A  C_  Fin )  ->  ~P A  =  ( { (/) }  u.  ( ~P A  \  { (/) } ) ) )
4910a1i 11 . . . . . . 7  |-  ( ( ( A  e.  Fin  /\  A  C_  Fin )  /\  s  e.  ~P A )  ->  1  e.  CC )
5049negcld 9354 . . . . . 6  |-  ( ( ( A  e.  Fin  /\  A  C_  Fin )  /\  s  e.  ~P A )  ->  -u 1  e.  CC )
515, 16, 18syl2an 464 . . . . . . 7  |-  ( ( ( A  e.  Fin  /\  A  C_  Fin )  /\  s  e.  ~P A )  ->  s  e.  Fin )
52 hashcl 11594 . . . . . . 7  |-  ( s  e.  Fin  ->  ( # `
 s )  e. 
NN0 )
5351, 52syl 16 . . . . . 6  |-  ( ( ( A  e.  Fin  /\  A  C_  Fin )  /\  s  e.  ~P A )  ->  ( # `
 s )  e. 
NN0 )
5450, 53expcld 11478 . . . . 5  |-  ( ( ( A  e.  Fin  /\  A  C_  Fin )  /\  s  e.  ~P A )  ->  ( -u 1 ^ ( # `  s ) )  e.  CC )
551adantr 452 . . . . . . . 8  |-  ( ( ( A  e.  Fin  /\  A  C_  Fin )  /\  s  e.  ~P A )  ->  U. A  e.  Fin )
56 inss1 3521 . . . . . . . 8  |-  ( U. A  i^i  |^| s )  C_  U. A
57 ssfi 7288 . . . . . . . 8  |-  ( ( U. A  e.  Fin  /\  ( U. A  i^i  |^| s )  C_  U. A
)  ->  ( U. A  i^i  |^| s )  e. 
Fin )
5855, 56, 57sylancl 644 . . . . . . 7  |-  ( ( ( A  e.  Fin  /\  A  C_  Fin )  /\  s  e.  ~P A )  ->  ( U. A  i^i  |^| s
)  e.  Fin )
59 hashcl 11594 . . . . . . 7  |-  ( ( U. A  i^i  |^| s )  e.  Fin  ->  ( # `  ( U. A  i^i  |^| s
) )  e.  NN0 )
6058, 59syl 16 . . . . . 6  |-  ( ( ( A  e.  Fin  /\  A  C_  Fin )  /\  s  e.  ~P A )  ->  ( # `
 ( U. A  i^i  |^| s ) )  e.  NN0 )
6160nn0cnd 10232 . . . . 5  |-  ( ( ( A  e.  Fin  /\  A  C_  Fin )  /\  s  e.  ~P A )  ->  ( # `
 ( U. A  i^i  |^| s ) )  e.  CC )
6254, 61mulcld 9064 . . . 4  |-  ( ( ( A  e.  Fin  /\  A  C_  Fin )  /\  s  e.  ~P A )  ->  (
( -u 1 ^ ( # `
 s ) )  x.  ( # `  ( U. A  i^i  |^| s
) ) )  e.  CC )
6341, 48, 7, 62fsumsplit 12488 . . 3  |-  ( ( A  e.  Fin  /\  A  C_  Fin )  ->  sum_ s  e.  ~P  A
( ( -u 1 ^ ( # `  s
) )  x.  ( # `
 ( U. A  i^i  |^| s ) ) )  =  ( sum_ s  e.  { (/) }  (
( -u 1 ^ ( # `
 s ) )  x.  ( # `  ( U. A  i^i  |^| s
) ) )  + 
sum_ s  e.  ( ~P A  \  { (/)
} ) ( (
-u 1 ^ ( # `
 s ) )  x.  ( # `  ( U. A  i^i  |^| s
) ) ) ) )
64 inidm 3510 . . . . . . 7  |-  ( U. A  i^i  U. A )  =  U. A
6564fveq2i 5690 . . . . . 6  |-  ( # `  ( U. A  i^i  U. A ) )  =  ( # `  U. A )
6665oveq2i 6051 . . . . 5  |-  ( (
# `  U. A )  -  ( # `  ( U. A  i^i  U. A
) ) )  =  ( ( # `  U. A )  -  ( # `
 U. A ) )
674subidd 9355 . . . . 5  |-  ( ( A  e.  Fin  /\  A  C_  Fin )  -> 
( ( # `  U. A )  -  ( # `
 U. A ) )  =  0 )
6866, 67syl5eq 2448 . . . 4  |-  ( ( A  e.  Fin  /\  A  C_  Fin )  -> 
( ( # `  U. A )  -  ( # `
 ( U. A  i^i  U. A ) ) )  =  0 )
69 incexclem 12571 . . . . 5  |-  ( ( A  e.  Fin  /\  U. A  e.  Fin )  ->  ( ( # `  U. A )  -  ( # `
 ( U. A  i^i  U. A ) ) )  =  sum_ s  e.  ~P  A ( (
-u 1 ^ ( # `
 s ) )  x.  ( # `  ( U. A  i^i  |^| s
) ) ) )
701, 69syldan 457 . . . 4  |-  ( ( A  e.  Fin  /\  A  C_  Fin )  -> 
( ( # `  U. A )  -  ( # `
 ( U. A  i^i  U. A ) ) )  =  sum_ s  e.  ~P  A ( (
-u 1 ^ ( # `
 s ) )  x.  ( # `  ( U. A  i^i  |^| s
) ) ) )
7168, 70eqtr3d 2438 . . 3  |-  ( ( A  e.  Fin  /\  A  C_  Fin )  -> 
0  =  sum_ s  e.  ~P  A ( (
-u 1 ^ ( # `
 s ) )  x.  ( # `  ( U. A  i^i  |^| s
) ) ) )
724, 39negsubd 9373 . . . 4  |-  ( ( A  e.  Fin  /\  A  C_  Fin )  -> 
( ( # `  U. A )  +  -u sum_ s  e.  ( ~P A  \  { (/) } ) ( ( -u
1 ^ ( (
# `  s )  -  1 ) )  x.  ( # `  |^| s ) ) )  =  ( ( # `  U. A )  -  sum_ s  e.  ( ~P A  \  { (/) } ) ( ( -u
1 ^ ( (
# `  s )  -  1 ) )  x.  ( # `  |^| s ) ) ) )
73 0ex 4299 . . . . . . 7  |-  (/)  e.  _V
7410a1i 11 . . . . . . . 8  |-  ( ( A  e.  Fin  /\  A  C_  Fin )  -> 
1  e.  CC )
7574, 4mulcld 9064 . . . . . . 7  |-  ( ( A  e.  Fin  /\  A  C_  Fin )  -> 
( 1  x.  ( # `
 U. A ) )  e.  CC )
76 fveq2 5687 . . . . . . . . . . . 12  |-  ( s  =  (/)  ->  ( # `  s )  =  (
# `  (/) ) )
77 hash0 11601 . . . . . . . . . . . 12  |-  ( # `  (/) )  =  0
7876, 77syl6eq 2452 . . . . . . . . . . 11  |-  ( s  =  (/)  ->  ( # `  s )  =  0 )
7978oveq2d 6056 . . . . . . . . . 10  |-  ( s  =  (/)  ->  ( -u
1 ^ ( # `  s ) )  =  ( -u 1 ^ 0 ) )
80 neg1cn 10023 . . . . . . . . . . 11  |-  -u 1  e.  CC
81 exp0 11341 . . . . . . . . . . 11  |-  ( -u
1  e.  CC  ->  (
-u 1 ^ 0 )  =  1 )
8280, 81ax-mp 8 . . . . . . . . . 10  |-  ( -u
1 ^ 0 )  =  1
8379, 82syl6eq 2452 . . . . . . . . 9  |-  ( s  =  (/)  ->  ( -u
1 ^ ( # `  s ) )  =  1 )
84 rint0 4050 . . . . . . . . . 10  |-  ( s  =  (/)  ->  ( U. A  i^i  |^| s )  = 
U. A )
8584fveq2d 5691 . . . . . . . . 9  |-  ( s  =  (/)  ->  ( # `  ( U. A  i^i  |^| s ) )  =  ( # `  U. A ) )
8683, 85oveq12d 6058 . . . . . . . 8  |-  ( s  =  (/)  ->  ( (
-u 1 ^ ( # `
 s ) )  x.  ( # `  ( U. A  i^i  |^| s
) ) )  =  ( 1  x.  ( # `
 U. A ) ) )
8786sumsn 12489 . . . . . . 7  |-  ( (
(/)  e.  _V  /\  (
1  x.  ( # `  U. A ) )  e.  CC )  ->  sum_ s  e.  { (/) }  ( ( -u 1 ^ ( # `  s
) )  x.  ( # `
 ( U. A  i^i  |^| s ) ) )  =  ( 1  x.  ( # `  U. A ) ) )
8873, 75, 87sylancr 645 . . . . . 6  |-  ( ( A  e.  Fin  /\  A  C_  Fin )  ->  sum_ s  e.  { (/) }  ( ( -u 1 ^ ( # `  s
) )  x.  ( # `
 ( U. A  i^i  |^| s ) ) )  =  ( 1  x.  ( # `  U. A ) ) )
894mulid2d 9062 . . . . . 6  |-  ( ( A  e.  Fin  /\  A  C_  Fin )  -> 
( 1  x.  ( # `
 U. A ) )  =  ( # `  U. A ) )
9088, 89eqtr2d 2437 . . . . 5  |-  ( ( A  e.  Fin  /\  A  C_  Fin )  -> 
( # `  U. A
)  =  sum_ s  e.  { (/) }  ( (
-u 1 ^ ( # `
 s ) )  x.  ( # `  ( U. A  i^i  |^| s
) ) ) )
919, 38fsumneg 12525 . . . . . 6  |-  ( ( A  e.  Fin  /\  A  C_  Fin )  ->  sum_ s  e.  ( ~P A  \  { (/) } ) -u ( (
-u 1 ^ (
( # `  s )  -  1 ) )  x.  ( # `  |^| s ) )  = 
-u sum_ s  e.  ( ~P A  \  { (/)
} ) ( (
-u 1 ^ (
( # `  s )  -  1 ) )  x.  ( # `  |^| s ) ) )
92 expm1t 11363 . . . . . . . . . . 11  |-  ( (
-u 1  e.  CC  /\  ( # `  s
)  e.  NN )  ->  ( -u 1 ^ ( # `  s
) )  =  ( ( -u 1 ^ ( ( # `  s
)  -  1 ) )  x.  -u 1
) )
9312, 22, 92syl2anc 643 . . . . . . . . . 10  |-  ( ( ( A  e.  Fin  /\  A  C_  Fin )  /\  s  e.  ( ~P A  \  { (/) } ) )  ->  ( -u 1 ^ ( # `  s ) )  =  ( ( -u 1 ^ ( ( # `  s )  -  1 ) )  x.  -u 1
) )
9425, 12mulcomd 9065 . . . . . . . . . 10  |-  ( ( ( A  e.  Fin  /\  A  C_  Fin )  /\  s  e.  ( ~P A  \  { (/) } ) )  ->  (
( -u 1 ^ (
( # `  s )  -  1 ) )  x.  -u 1 )  =  ( -u 1  x.  ( -u 1 ^ ( ( # `  s
)  -  1 ) ) ) )
9525mulm1d 9441 . . . . . . . . . 10  |-  ( ( ( A  e.  Fin  /\  A  C_  Fin )  /\  s  e.  ( ~P A  \  { (/) } ) )  ->  ( -u 1  x.  ( -u
1 ^ ( (
# `  s )  -  1 ) ) )  =  -u ( -u 1 ^ ( (
# `  s )  -  1 ) ) )
9693, 94, 953eqtrd 2440 . . . . . . . . 9  |-  ( ( ( A  e.  Fin  /\  A  C_  Fin )  /\  s  e.  ( ~P A  \  { (/) } ) )  ->  ( -u 1 ^ ( # `  s ) )  = 
-u ( -u 1 ^ ( ( # `  s )  -  1 ) ) )
9726unissd 3999 . . . . . . . . . . . 12  |-  ( ( ( A  e.  Fin  /\  A  C_  Fin )  /\  s  e.  ( ~P A  \  { (/) } ) )  ->  U. s  C_ 
U. A )
9832, 97sstrd 3318 . . . . . . . . . . 11  |-  ( ( ( A  e.  Fin  /\  A  C_  Fin )  /\  s  e.  ( ~P A  \  { (/) } ) )  ->  |^| s  C_ 
U. A )
99 dfss1 3505 . . . . . . . . . . 11  |-  ( |^| s  C_  U. A  <->  ( U. A  i^i  |^| s )  = 
|^| s )
10098, 99sylib 189 . . . . . . . . . 10  |-  ( ( ( A  e.  Fin  /\  A  C_  Fin )  /\  s  e.  ( ~P A  \  { (/) } ) )  ->  ( U. A  i^i  |^| s
)  =  |^| s
)
101100fveq2d 5691 . . . . . . . . 9  |-  ( ( ( A  e.  Fin  /\  A  C_  Fin )  /\  s  e.  ( ~P A  \  { (/) } ) )  ->  ( # `
 ( U. A  i^i  |^| s ) )  =  ( # `  |^| s ) )
10296, 101oveq12d 6058 . . . . . . . 8  |-  ( ( ( A  e.  Fin  /\  A  C_  Fin )  /\  s  e.  ( ~P A  \  { (/) } ) )  ->  (
( -u 1 ^ ( # `
 s ) )  x.  ( # `  ( U. A  i^i  |^| s
) ) )  =  ( -u ( -u
1 ^ ( (
# `  s )  -  1 ) )  x.  ( # `  |^| s ) ) )
10325, 37mulneg1d 9442 . . . . . . . 8  |-  ( ( ( A  e.  Fin  /\  A  C_  Fin )  /\  s  e.  ( ~P A  \  { (/) } ) )  ->  ( -u ( -u 1 ^ ( ( # `  s
)  -  1 ) )  x.  ( # `  |^| s ) )  =  -u ( ( -u
1 ^ ( (
# `  s )  -  1 ) )  x.  ( # `  |^| s ) ) )
104102, 103eqtr2d 2437 . . . . . . 7  |-  ( ( ( A  e.  Fin  /\  A  C_  Fin )  /\  s  e.  ( ~P A  \  { (/) } ) )  ->  -u (
( -u 1 ^ (
( # `  s )  -  1 ) )  x.  ( # `  |^| s ) )  =  ( ( -u 1 ^ ( # `  s
) )  x.  ( # `
 ( U. A  i^i  |^| s ) ) ) )
105104sumeq2dv 12452 . . . . . 6  |-  ( ( A  e.  Fin  /\  A  C_  Fin )  ->  sum_ s  e.  ( ~P A  \  { (/) } ) -u ( (
-u 1 ^ (
( # `  s )  -  1 ) )  x.  ( # `  |^| s ) )  = 
sum_ s  e.  ( ~P A  \  { (/)
} ) ( (
-u 1 ^ ( # `
 s ) )  x.  ( # `  ( U. A  i^i  |^| s
) ) ) )
10691, 105eqtr3d 2438 . . . . 5  |-  ( ( A  e.  Fin  /\  A  C_  Fin )  ->  -u
sum_ s  e.  ( ~P A  \  { (/)
} ) ( (
-u 1 ^ (
( # `  s )  -  1 ) )  x.  ( # `  |^| s ) )  = 
sum_ s  e.  ( ~P A  \  { (/)
} ) ( (
-u 1 ^ ( # `
 s ) )  x.  ( # `  ( U. A  i^i  |^| s
) ) ) )
10790, 106oveq12d 6058 . . . 4  |-  ( ( A  e.  Fin  /\  A  C_  Fin )  -> 
( ( # `  U. A )  +  -u sum_ s  e.  ( ~P A  \  { (/) } ) ( ( -u
1 ^ ( (
# `  s )  -  1 ) )  x.  ( # `  |^| s ) ) )  =  ( sum_ s  e.  { (/) }  ( (
-u 1 ^ ( # `
 s ) )  x.  ( # `  ( U. A  i^i  |^| s
) ) )  + 
sum_ s  e.  ( ~P A  \  { (/)
} ) ( (
-u 1 ^ ( # `
 s ) )  x.  ( # `  ( U. A  i^i  |^| s
) ) ) ) )
10872, 107eqtr3d 2438 . . 3  |-  ( ( A  e.  Fin  /\  A  C_  Fin )  -> 
( ( # `  U. A )  -  sum_ s  e.  ( ~P A  \  { (/) } ) ( ( -u 1 ^ ( ( # `  s )  -  1 ) )  x.  ( # `
 |^| s ) ) )  =  ( sum_ s  e.  { (/) }  (
( -u 1 ^ ( # `
 s ) )  x.  ( # `  ( U. A  i^i  |^| s
) ) )  + 
sum_ s  e.  ( ~P A  \  { (/)
} ) ( (
-u 1 ^ ( # `
 s ) )  x.  ( # `  ( U. A  i^i  |^| s
) ) ) ) )
10963, 71, 1083eqtr4rd 2447 . 2  |-  ( ( A  e.  Fin  /\  A  C_  Fin )  -> 
( ( # `  U. A )  -  sum_ s  e.  ( ~P A  \  { (/) } ) ( ( -u 1 ^ ( ( # `  s )  -  1 ) )  x.  ( # `
 |^| s ) ) )  =  0 )
1104, 39, 109subeq0d 9375 1  |-  ( ( A  e.  Fin  /\  A  C_  Fin )  -> 
( # `  U. A
)  =  sum_ s  e.  ( ~P A  \  { (/) } ) ( ( -u 1 ^ ( ( # `  s
)  -  1 ) )  x.  ( # `  |^| s ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 177    /\ wa 359    = wceq 1649    e. wcel 1721    =/= wne 2567   _Vcvv 2916    \ cdif 3277    u. cun 3278    i^i cin 3279    C_ wss 3280   (/)c0 3588   ~Pcpw 3759   {csn 3774   U.cuni 3975   |^|cint 4010   ` cfv 5413  (class class class)co 6040   Fincfn 7068   CCcc 8944   0cc0 8946   1c1 8947    + caddc 8949    x. cmul 8951    - cmin 9247   -ucneg 9248   NNcn 9956   NN0cn0 10177   ^cexp 11337   #chash 11573   sum_csu 12434
This theorem is referenced by:  incexc2  12573
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1662  ax-8 1683  ax-13 1723  ax-14 1725  ax-6 1740  ax-7 1745  ax-11 1757  ax-12 1946  ax-ext 2385  ax-rep 4280  ax-sep 4290  ax-nul 4298  ax-pow 4337  ax-pr 4363  ax-un 4660  ax-inf2 7552  ax-cnex 9002  ax-resscn 9003  ax-1cn 9004  ax-icn 9005  ax-addcl 9006  ax-addrcl 9007  ax-mulcl 9008  ax-mulrcl 9009  ax-mulcom 9010  ax-addass 9011  ax-mulass 9012  ax-distr 9013  ax-i2m1 9014  ax-1ne0 9015  ax-1rid 9016  ax-rnegex 9017  ax-rrecex 9018  ax-cnre 9019  ax-pre-lttri 9020  ax-pre-lttrn 9021  ax-pre-ltadd 9022  ax-pre-mulgt0 9023  ax-pre-sup 9024
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2258  df-mo 2259  df-clab 2391  df-cleq 2397  df-clel 2400  df-nfc 2529  df-ne 2569  df-nel 2570  df-ral 2671  df-rex 2672  df-reu 2673  df-rmo 2674  df-rab 2675  df-v 2918  df-sbc 3122  df-csb 3212  df-dif 3283  df-un 3285  df-in 3287  df-ss 3294  df-pss 3296  df-nul 3589  df-if 3700  df-pw 3761  df-sn 3780  df-pr 3781  df-tp 3782  df-op 3783  df-uni 3976  df-int 4011  df-iun 4055  df-br 4173  df-opab 4227  df-mpt 4228  df-tr 4263  df-eprel 4454  df-id 4458  df-po 4463  df-so 4464  df-fr 4501  df-se 4502  df-we 4503  df-ord 4544  df-on 4545  df-lim 4546  df-suc 4547  df-om 4805  df-xp 4843  df-rel 4844  df-cnv 4845  df-co 4846  df-dm 4847  df-rn 4848  df-res 4849  df-ima 4850  df-iota 5377  df-fun 5415  df-fn 5416  df-f 5417  df-f1 5418  df-fo 5419  df-f1o 5420  df-fv 5421  df-isom 5422  df-ov 6043  df-oprab 6044  df-mpt2 6045  df-1st 6308  df-2nd 6309  df-riota 6508  df-recs 6592  df-rdg 6627  df-1o 6683  df-2o 6684  df-oadd 6687  df-er 6864  df-map 6979  df-en 7069  df-dom 7070  df-sdom 7071  df-fin 7072  df-sup 7404  df-oi 7435  df-card 7782  df-cda 8004  df-pnf 9078  df-mnf 9079  df-xr 9080  df-ltxr 9081  df-le 9082  df-sub 9249  df-neg 9250  df-div 9634  df-nn 9957  df-2 10014  df-3 10015  df-n0 10178  df-z 10239  df-uz 10445  df-rp 10569  df-fz 11000  df-fzo 11091  df-seq 11279  df-exp 11338  df-hash 11574  df-cj 11859  df-re 11860  df-im 11861  df-sqr 11995  df-abs 11996  df-clim 12237  df-sum 12435
  Copyright terms: Public domain W3C validator