Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  iinun2 Unicode version

Theorem iinun2 3866
 Description: Indexed intersection of union. Generalization of half of theorem "Distributive laws" in [Enderton] p. 30. Use intiin 3854 to recover Enderton's theorem. (Contributed by NM, 19-Aug-2004.)
Assertion
Ref Expression
iinun2
Distinct variable group:   ,
Allowed substitution hints:   ()   ()

Proof of Theorem iinun2
StepHypRef Expression
1 r19.32v 2648 . . . 4
2 elun 3226 . . . . 5
32ralbii 2531 . . . 4
4 vex 2730 . . . . . 6
5 eliin 3808 . . . . . 6
64, 5ax-mp 10 . . . . 5
76orbi2i 507 . . . 4
81, 3, 73bitr4i 270 . . 3
9 eliin 3808 . . . 4
104, 9ax-mp 10 . . 3
11 elun 3226 . . 3
128, 10, 113bitr4i 270 . 2
1312eqriv 2250 1
 Colors of variables: wff set class Syntax hints:   wb 178   wo 359   wceq 1619   wcel 1621  wral 2509  cvv 2727   cun 3076  ciin 3804 This theorem was proved from axioms:  ax-1 7  ax-2 8  ax-3 9  ax-mp 10  ax-5 1533  ax-6 1534  ax-7 1535  ax-gen 1536  ax-8 1623  ax-11 1624  ax-17 1628  ax-12o 1664  ax-10 1678  ax-9 1684  ax-4 1692  ax-16 1926  ax-ext 2234 This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-tru 1315  df-ex 1538  df-nf 1540  df-sb 1883  df-clab 2240  df-cleq 2246  df-clel 2249  df-nfc 2374  df-ral 2513  df-v 2729  df-un 3083  df-iin 3806
 Copyright terms: Public domain W3C validator