HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  hvsubval Unicode version

Theorem hvsubval 21426
Description: Value of vector subtraction. (Contributed by NM, 5-Sep-1999.) (Revised by Mario Carneiro, 23-Dec-2013.) (New usage is discouraged.)
Assertion
Ref Expression
hvsubval  |-  ( ( A  e.  ~H  /\  B  e.  ~H )  ->  ( A  -h  B
)  =  ( A  +h  ( -u 1  .h  B ) ) )

Proof of Theorem hvsubval
StepHypRef Expression
1 oveq1 5717 . 2  |-  ( x  =  A  ->  (
x  +h  ( -u
1  .h  y ) )  =  ( A  +h  ( -u 1  .h  y ) ) )
2 oveq2 5718 . . 3  |-  ( y  =  B  ->  ( -u 1  .h  y )  =  ( -u 1  .h  B ) )
32oveq2d 5726 . 2  |-  ( y  =  B  ->  ( A  +h  ( -u 1  .h  y ) )  =  ( A  +h  ( -u 1  .h  B ) ) )
4 df-hvsub 21381 . 2  |-  -h  =  ( x  e.  ~H ,  y  e.  ~H  |->  ( x  +h  ( -u 1  .h  y ) ) )
5 ovex 5735 . 2  |-  ( A  +h  ( -u 1  .h  B ) )  e. 
_V
61, 3, 4, 5ovmpt2 5835 1  |-  ( ( A  e.  ~H  /\  B  e.  ~H )  ->  ( A  -h  B
)  =  ( A  +h  ( -u 1  .h  B ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 6    /\ wa 360    = wceq 1619    e. wcel 1621  (class class class)co 5710   1c1 8618   -ucneg 8918   ~Hchil 21329    +h cva 21330    .h csm 21331    -h cmv 21335
This theorem is referenced by:  hvsubcl  21427  hvsubvali  21430  hvsubid  21435  hvnegid  21436  hv2neg  21437  hvaddsubval  21442  hvsub4  21446  hvaddsub12  21447  hvpncan  21448  hvaddsubass  21450  hvsubass  21453  hvsubdistr1  21458  hvsubdistr2  21459  hvsubcan  21483  hvsub0  21485  his2sub  21501  hhph  21587  shsubcl  21630  shsel3  21724  honegsubi  22206  lnopsubi  22384  lnfnsubi  22456  superpos  22764  cdj1i  22843
This theorem was proved from axioms:  ax-1 7  ax-2 8  ax-3 9  ax-mp 10  ax-5 1533  ax-6 1534  ax-7 1535  ax-gen 1536  ax-8 1623  ax-11 1624  ax-13 1625  ax-14 1626  ax-17 1628  ax-12o 1664  ax-10 1678  ax-9 1684  ax-4 1692  ax-16 1926  ax-ext 2234  ax-sep 4038  ax-nul 4046  ax-pr 4108  ax-un 4403
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3an 941  df-tru 1315  df-ex 1538  df-nf 1540  df-sb 1883  df-eu 2118  df-mo 2119  df-clab 2240  df-cleq 2246  df-clel 2249  df-nfc 2374  df-ne 2414  df-ral 2513  df-rex 2514  df-rab 2516  df-v 2729  df-sbc 2922  df-dif 3081  df-un 3083  df-in 3085  df-ss 3089  df-nul 3363  df-if 3471  df-sn 3550  df-pr 3551  df-op 3553  df-uni 3728  df-br 3921  df-opab 3975  df-id 4202  df-xp 4594  df-rel 4595  df-cnv 4596  df-co 4597  df-dm 4598  df-rn 4599  df-res 4600  df-ima 4601  df-fun 4602  df-fv 4608  df-ov 5713  df-oprab 5714  df-mpt2 5715  df-hvsub 21381
  Copyright terms: Public domain W3C validator