HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  hoeq1 Unicode version

Theorem hoeq1 22240
Description: A condition implying that two Hilbert space operators are equal. Lemma 3.2(S9) of [Beran] p. 95. (Contributed by NM, 15-Feb-2006.) (New usage is discouraged.)
Assertion
Ref Expression
hoeq1  |-  ( ( S : ~H --> ~H  /\  T : ~H --> ~H )  ->  ( A. x  e. 
~H  A. y  e.  ~H  ( ( S `  x )  .ih  y
)  =  ( ( T `  x ) 
.ih  y )  <->  S  =  T ) )
Distinct variable groups:    x, y, S    x, T, y

Proof of Theorem hoeq1
StepHypRef Expression
1 ffvelrn 5515 . . . . 5  |-  ( ( S : ~H --> ~H  /\  x  e.  ~H )  ->  ( S `  x
)  e.  ~H )
2 ffvelrn 5515 . . . . 5  |-  ( ( T : ~H --> ~H  /\  x  e.  ~H )  ->  ( T `  x
)  e.  ~H )
3 hial2eq 21515 . . . . 5  |-  ( ( ( S `  x
)  e.  ~H  /\  ( T `  x )  e.  ~H )  -> 
( A. y  e. 
~H  ( ( S `
 x )  .ih  y )  =  ( ( T `  x
)  .ih  y )  <->  ( S `  x )  =  ( T `  x ) ) )
41, 2, 3syl2an 465 . . . 4  |-  ( ( ( S : ~H --> ~H  /\  x  e.  ~H )  /\  ( T : ~H
--> ~H  /\  x  e. 
~H ) )  -> 
( A. y  e. 
~H  ( ( S `
 x )  .ih  y )  =  ( ( T `  x
)  .ih  y )  <->  ( S `  x )  =  ( T `  x ) ) )
54anandirs 807 . . 3  |-  ( ( ( S : ~H --> ~H  /\  T : ~H --> ~H )  /\  x  e.  ~H )  ->  ( A. y  e.  ~H  ( ( S `  x )  .ih  y
)  =  ( ( T `  x ) 
.ih  y )  <->  ( S `  x )  =  ( T `  x ) ) )
65ralbidva 2523 . 2  |-  ( ( S : ~H --> ~H  /\  T : ~H --> ~H )  ->  ( A. x  e. 
~H  A. y  e.  ~H  ( ( S `  x )  .ih  y
)  =  ( ( T `  x ) 
.ih  y )  <->  A. x  e.  ~H  ( S `  x )  =  ( T `  x ) ) )
7 ffn 5246 . . 3  |-  ( S : ~H --> ~H  ->  S  Fn  ~H )
8 ffn 5246 . . 3  |-  ( T : ~H --> ~H  ->  T  Fn  ~H )
9 eqfnfv 5474 . . 3  |-  ( ( S  Fn  ~H  /\  T  Fn  ~H )  ->  ( S  =  T  <->  A. x  e.  ~H  ( S `  x )  =  ( T `  x ) ) )
107, 8, 9syl2an 465 . 2  |-  ( ( S : ~H --> ~H  /\  T : ~H --> ~H )  ->  ( S  =  T  <->  A. x  e.  ~H  ( S `  x )  =  ( T `  x ) ) )
116, 10bitr4d 249 1  |-  ( ( S : ~H --> ~H  /\  T : ~H --> ~H )  ->  ( A. x  e. 
~H  A. y  e.  ~H  ( ( S `  x )  .ih  y
)  =  ( ( T `  x ) 
.ih  y )  <->  S  =  T ) )
Colors of variables: wff set class
Syntax hints:    -> wi 6    <-> wb 178    /\ wa 360    = wceq 1619    e. wcel 1621   A.wral 2509    Fn wfn 4587   -->wf 4588   ` cfv 4592  (class class class)co 5710   ~Hchil 21329    .ih csp 21332
This theorem is referenced by:  hoeq2  22241  adjmo  22242  adjadj  22346
This theorem was proved from axioms:  ax-1 7  ax-2 8  ax-3 9  ax-mp 10  ax-5 1533  ax-6 1534  ax-7 1535  ax-gen 1536  ax-8 1623  ax-11 1624  ax-13 1625  ax-14 1626  ax-17 1628  ax-12o 1664  ax-10 1678  ax-9 1684  ax-4 1692  ax-16 1926  ax-ext 2234  ax-sep 4038  ax-nul 4046  ax-pow 4082  ax-pr 4108  ax-un 4403  ax-resscn 8674  ax-1cn 8675  ax-icn 8676  ax-addcl 8677  ax-addrcl 8678  ax-mulcl 8679  ax-mulrcl 8680  ax-mulcom 8681  ax-addass 8682  ax-mulass 8683  ax-distr 8684  ax-i2m1 8685  ax-1ne0 8686  ax-1rid 8687  ax-rnegex 8688  ax-rrecex 8689  ax-cnre 8690  ax-pre-lttri 8691  ax-pre-lttrn 8692  ax-pre-ltadd 8693  ax-hfvadd 21410  ax-hvcom 21411  ax-hvass 21412  ax-hv0cl 21413  ax-hvaddid 21414  ax-hfvmul 21415  ax-hvmulid 21416  ax-hvdistr2 21419  ax-hvmul0 21420  ax-hfi 21488  ax-his2 21492  ax-his3 21493  ax-his4 21494
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3or 940  df-3an 941  df-tru 1315  df-ex 1538  df-nf 1540  df-sb 1883  df-eu 2118  df-mo 2119  df-clab 2240  df-cleq 2246  df-clel 2249  df-nfc 2374  df-ne 2414  df-nel 2415  df-ral 2513  df-rex 2514  df-reu 2515  df-rab 2516  df-v 2729  df-sbc 2922  df-csb 3010  df-dif 3081  df-un 3083  df-in 3085  df-ss 3089  df-nul 3363  df-if 3471  df-pw 3532  df-sn 3550  df-pr 3551  df-op 3553  df-uni 3728  df-iun 3805  df-br 3921  df-opab 3975  df-mpt 3976  df-id 4202  df-po 4207  df-so 4208  df-xp 4594  df-rel 4595  df-cnv 4596  df-co 4597  df-dm 4598  df-rn 4599  df-res 4600  df-ima 4601  df-fun 4602  df-fn 4603  df-f 4604  df-f1 4605  df-fo 4606  df-f1o 4607  df-fv 4608  df-ov 5713  df-oprab 5714  df-mpt2 5715  df-iota 6143  df-riota 6190  df-er 6546  df-en 6750  df-dom 6751  df-sdom 6752  df-pnf 8749  df-mnf 8750  df-ltxr 8752  df-sub 8919  df-neg 8920  df-hvsub 21381
  Copyright terms: Public domain W3C validator