Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  hbae Unicode version

Theorem hbae 2005
 Description: All variables are effectively bound in an identical variable specifier. (Contributed by NM, 5-Aug-1993.)
Assertion
Ref Expression
hbae

Proof of Theorem hbae
StepHypRef Expression
1 sp 1759 . . . . 5
2 ax12o 1976 . . . . 5
31, 2syl7 65 . . . 4
4 ax10o 2001 . . . . 5
54aecoms 2003 . . . 4
6 ax10o 2001 . . . . . . 7
76pm2.43i 45 . . . . . 6
8 ax10o 2001 . . . . . 6
97, 8syl5 30 . . . . 5
109aecoms 2003 . . . 4
113, 5, 10pm2.61ii 159 . . 3
1211a5i 1803 . 2
13 ax-7 1745 . 2
1412, 13syl 16 1
 Colors of variables: wff set class Syntax hints:   wn 3   wi 4  wal 1546 This theorem is referenced by:  nfae  2006  hbnae  2007  aev  2011  dral2OLD  2021  dral1OLD  2023  drex2  2025  a9e2eq  28355 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1662  ax-8 1683  ax-6 1740  ax-7 1745  ax-11 1757  ax-12 1946 This theorem depends on definitions:  df-bi 178  df-an 361  df-ex 1548  df-nf 1551
 Copyright terms: Public domain W3C validator