MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  hbae Unicode version

Theorem hbae 1841
Description: All variables are effectively bound in an identical variable specifier. (Contributed by NM, 5-Aug-1993.)
Assertion
Ref Expression
hbae  |-  ( A. x  x  =  y  ->  A. z A. x  x  =  y )

Proof of Theorem hbae
StepHypRef Expression
1 ax-4 1692 . . . . 5  |-  ( A. x  x  =  y  ->  x  =  y )
2 ax-12o 1664 . . . . 5  |-  ( -. 
A. z  z  =  x  ->  ( -.  A. z  z  =  y  ->  ( x  =  y  ->  A. z  x  =  y )
) )
31, 2syl7 65 . . . 4  |-  ( -. 
A. z  z  =  x  ->  ( -.  A. z  z  =  y  ->  ( A. x  x  =  y  ->  A. z  x  =  y ) ) )
4 ax10o 1835 . . . . 5  |-  ( A. x  x  =  z  ->  ( A. x  x  =  y  ->  A. z  x  =  y )
)
54alequcoms 1681 . . . 4  |-  ( A. z  z  =  x  ->  ( A. x  x  =  y  ->  A. z  x  =  y )
)
6 ax10o 1835 . . . . . . 7  |-  ( A. x  x  =  y  ->  ( A. x  x  =  y  ->  A. y  x  =  y )
)
76pm2.43i 45 . . . . . 6  |-  ( A. x  x  =  y  ->  A. y  x  =  y )
8 ax10o 1835 . . . . . 6  |-  ( A. y  y  =  z  ->  ( A. y  x  =  y  ->  A. z  x  =  y )
)
97, 8syl5 30 . . . . 5  |-  ( A. y  y  =  z  ->  ( A. x  x  =  y  ->  A. z  x  =  y )
)
109alequcoms 1681 . . . 4  |-  ( A. z  z  =  y  ->  ( A. x  x  =  y  ->  A. z  x  =  y )
)
113, 5, 10pm2.61ii 159 . . 3  |-  ( A. x  x  =  y  ->  A. z  x  =  y )
1211a5i 1721 . 2  |-  ( A. x  x  =  y  ->  A. x A. z  x  =  y )
13 ax-7 1535 . 2  |-  ( A. x A. z  x  =  y  ->  A. z A. x  x  =  y )
1412, 13syl 17 1  |-  ( A. x  x  =  y  ->  A. z A. x  x  =  y )
Colors of variables: wff set class
Syntax hints:   -. wn 5    -> wi 6   A.wal 1532
This theorem is referenced by:  nfae  1843  hbaes  1844  hbnae  1845  dral1  1856  dral2  1858  drex2  1861  a9e2eq  27360  a12stdy3  28279
This theorem was proved from axioms:  ax-1 7  ax-2 8  ax-3 9  ax-mp 10  ax-5 1533  ax-6 1534  ax-7 1535  ax-gen 1536  ax-8 1623  ax-11 1624  ax-17 1628  ax-12o 1664  ax-10 1678  ax-9 1684  ax-4 1692
This theorem depends on definitions:  df-bi 179  df-an 362  df-ex 1538  df-nf 1540
  Copyright terms: Public domain W3C validator