MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  hbae Unicode version

Theorem hbae 1906
Description: All variables are effectively bound in an identical variable specifier. (Contributed by NM, 5-Aug-1993.)
Assertion
Ref Expression
hbae  |-  ( A. x  x  =  y  ->  A. z A. x  x  =  y )

Proof of Theorem hbae
StepHypRef Expression
1 sp 1728 . . . . 5  |-  ( A. x  x  =  y  ->  x  =  y )
2 ax12o 1887 . . . . 5  |-  ( -. 
A. z  z  =  x  ->  ( -.  A. z  z  =  y  ->  ( x  =  y  ->  A. z  x  =  y )
) )
31, 2syl7 63 . . . 4  |-  ( -. 
A. z  z  =  x  ->  ( -.  A. z  z  =  y  ->  ( A. x  x  =  y  ->  A. z  x  =  y ) ) )
4 ax10o 1905 . . . . 5  |-  ( A. x  x  =  z  ->  ( A. x  x  =  y  ->  A. z  x  =  y )
)
54aecoms 1900 . . . 4  |-  ( A. z  z  =  x  ->  ( A. x  x  =  y  ->  A. z  x  =  y )
)
6 ax10o 1905 . . . . . . 7  |-  ( A. x  x  =  y  ->  ( A. x  x  =  y  ->  A. y  x  =  y )
)
76pm2.43i 43 . . . . . 6  |-  ( A. x  x  =  y  ->  A. y  x  =  y )
8 ax10o 1905 . . . . . 6  |-  ( A. y  y  =  z  ->  ( A. y  x  =  y  ->  A. z  x  =  y )
)
97, 8syl5 28 . . . . 5  |-  ( A. y  y  =  z  ->  ( A. x  x  =  y  ->  A. z  x  =  y )
)
109aecoms 1900 . . . 4  |-  ( A. z  z  =  y  ->  ( A. x  x  =  y  ->  A. z  x  =  y )
)
113, 5, 10pm2.61ii 157 . . 3  |-  ( A. x  x  =  y  ->  A. z  x  =  y )
1211a5i 1770 . 2  |-  ( A. x  x  =  y  ->  A. x A. z  x  =  y )
13 ax-7 1720 . 2  |-  ( A. x A. z  x  =  y  ->  A. z A. x  x  =  y )
1412, 13syl 15 1  |-  ( A. x  x  =  y  ->  A. z A. x  x  =  y )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4   A.wal 1530
This theorem is referenced by:  nfae  1907  hbnae  1908  dral1  1918  dral2  1919  drex2  1921  aev  1944  a9e2eq  28621  a12stdy3  29750
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1536  ax-5 1547  ax-17 1606  ax-9 1644  ax-8 1661  ax-6 1715  ax-7 1720  ax-11 1727  ax-12 1878
This theorem depends on definitions:  df-bi 177  df-an 360  df-ex 1532  df-nf 1535
  Copyright terms: Public domain W3C validator