MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  grpinveu Unicode version

Theorem grpinveu 14794
Description: The left inverse element of a group is unique. Lemma 2.2.1(b) of [Herstein] p. 55. (Contributed by NM, 24-Aug-2011.)
Hypotheses
Ref Expression
grpinveu.b  |-  B  =  ( Base `  G
)
grpinveu.p  |-  .+  =  ( +g  `  G )
grpinveu.o  |-  .0.  =  ( 0g `  G )
Assertion
Ref Expression
grpinveu  |-  ( ( G  e.  Grp  /\  X  e.  B )  ->  E! y  e.  B  ( y  .+  X
)  =  .0.  )
Distinct variable groups:    y, B    y, G    y,  .+    y,  .0.    y, X

Proof of Theorem grpinveu
Dummy variable  z is distinct from all other variables.
StepHypRef Expression
1 grpinveu.b . . . 4  |-  B  =  ( Base `  G
)
2 grpinveu.p . . . 4  |-  .+  =  ( +g  `  G )
3 grpinveu.o . . . 4  |-  .0.  =  ( 0g `  G )
41, 2, 3grpinvex 14775 . . 3  |-  ( ( G  e.  Grp  /\  X  e.  B )  ->  E. y  e.  B  ( y  .+  X
)  =  .0.  )
5 eqtr3 2423 . . . . . . . . . . . 12  |-  ( ( ( y  .+  X
)  =  .0.  /\  ( z  .+  X
)  =  .0.  )  ->  ( y  .+  X
)  =  ( z 
.+  X ) )
61, 2grprcan 14793 . . . . . . . . . . . 12  |-  ( ( G  e.  Grp  /\  ( y  e.  B  /\  z  e.  B  /\  X  e.  B
) )  ->  (
( y  .+  X
)  =  ( z 
.+  X )  <->  y  =  z ) )
75, 6syl5ib 211 . . . . . . . . . . 11  |-  ( ( G  e.  Grp  /\  ( y  e.  B  /\  z  e.  B  /\  X  e.  B
) )  ->  (
( ( y  .+  X )  =  .0. 
/\  ( z  .+  X )  =  .0.  )  ->  y  =  z ) )
873exp2 1171 . . . . . . . . . 10  |-  ( G  e.  Grp  ->  (
y  e.  B  -> 
( z  e.  B  ->  ( X  e.  B  ->  ( ( ( y 
.+  X )  =  .0.  /\  ( z 
.+  X )  =  .0.  )  ->  y  =  z ) ) ) ) )
98com24 83 . . . . . . . . 9  |-  ( G  e.  Grp  ->  ( X  e.  B  ->  ( z  e.  B  -> 
( y  e.  B  ->  ( ( ( y 
.+  X )  =  .0.  /\  ( z 
.+  X )  =  .0.  )  ->  y  =  z ) ) ) ) )
109imp41 577 . . . . . . . 8  |-  ( ( ( ( G  e. 
Grp  /\  X  e.  B )  /\  z  e.  B )  /\  y  e.  B )  ->  (
( ( y  .+  X )  =  .0. 
/\  ( z  .+  X )  =  .0.  )  ->  y  =  z ) )
1110an32s 780 . . . . . . 7  |-  ( ( ( ( G  e. 
Grp  /\  X  e.  B )  /\  y  e.  B )  /\  z  e.  B )  ->  (
( ( y  .+  X )  =  .0. 
/\  ( z  .+  X )  =  .0.  )  ->  y  =  z ) )
1211exp3a 426 . . . . . 6  |-  ( ( ( ( G  e. 
Grp  /\  X  e.  B )  /\  y  e.  B )  /\  z  e.  B )  ->  (
( y  .+  X
)  =  .0.  ->  ( ( z  .+  X
)  =  .0.  ->  y  =  z ) ) )
1312ralrimdva 2756 . . . . 5  |-  ( ( ( G  e.  Grp  /\  X  e.  B )  /\  y  e.  B
)  ->  ( (
y  .+  X )  =  .0.  ->  A. z  e.  B  ( (
z  .+  X )  =  .0.  ->  y  =  z ) ) )
1413ancld 537 . . . 4  |-  ( ( ( G  e.  Grp  /\  X  e.  B )  /\  y  e.  B
)  ->  ( (
y  .+  X )  =  .0.  ->  ( (
y  .+  X )  =  .0.  /\  A. z  e.  B  ( (
z  .+  X )  =  .0.  ->  y  =  z ) ) ) )
1514reximdva 2778 . . 3  |-  ( ( G  e.  Grp  /\  X  e.  B )  ->  ( E. y  e.  B  ( y  .+  X )  =  .0. 
->  E. y  e.  B  ( ( y  .+  X )  =  .0. 
/\  A. z  e.  B  ( ( z  .+  X )  =  .0. 
->  y  =  z
) ) ) )
164, 15mpd 15 . 2  |-  ( ( G  e.  Grp  /\  X  e.  B )  ->  E. y  e.  B  ( ( y  .+  X )  =  .0. 
/\  A. z  e.  B  ( ( z  .+  X )  =  .0. 
->  y  =  z
) ) )
17 oveq1 6047 . . . 4  |-  ( y  =  z  ->  (
y  .+  X )  =  ( z  .+  X ) )
1817eqeq1d 2412 . . 3  |-  ( y  =  z  ->  (
( y  .+  X
)  =  .0.  <->  ( z  .+  X )  =  .0.  ) )
1918reu8 3090 . 2  |-  ( E! y  e.  B  ( y  .+  X )  =  .0.  <->  E. y  e.  B  ( (
y  .+  X )  =  .0.  /\  A. z  e.  B  ( (
z  .+  X )  =  .0.  ->  y  =  z ) ) )
2016, 19sylibr 204 1  |-  ( ( G  e.  Grp  /\  X  e.  B )  ->  E! y  e.  B  ( y  .+  X
)  =  .0.  )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 359    /\ w3a 936    = wceq 1649    e. wcel 1721   A.wral 2666   E.wrex 2667   E!wreu 2668   ` cfv 5413  (class class class)co 6040   Basecbs 13424   +g cplusg 13484   0gc0g 13678   Grpcgrp 14640
This theorem is referenced by:  grpinvf  14804  grplinv  14806  isgrpinv  14810
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1662  ax-8 1683  ax-13 1723  ax-14 1725  ax-6 1740  ax-7 1745  ax-11 1757  ax-12 1946  ax-ext 2385  ax-sep 4290  ax-nul 4298  ax-pow 4337  ax-pr 4363
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2258  df-mo 2259  df-clab 2391  df-cleq 2397  df-clel 2400  df-nfc 2529  df-ne 2569  df-ral 2671  df-rex 2672  df-reu 2673  df-rmo 2674  df-rab 2675  df-v 2918  df-sbc 3122  df-dif 3283  df-un 3285  df-in 3287  df-ss 3294  df-nul 3589  df-if 3700  df-sn 3780  df-pr 3781  df-op 3783  df-uni 3976  df-br 4173  df-opab 4227  df-mpt 4228  df-id 4458  df-xp 4843  df-rel 4844  df-cnv 4845  df-co 4846  df-dm 4847  df-iota 5377  df-fun 5415  df-fv 5421  df-ov 6043  df-riota 6508  df-0g 13682  df-mnd 14645  df-grp 14767
  Copyright terms: Public domain W3C validator