MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  grpideu Unicode version

Theorem grpideu 14776
Description: The two-sided identity element of a group is unique. Lemma 2.2.1(a) of [Herstein] p. 55. (Contributed by NM, 16-Aug-2011.) (Revised by Mario Carneiro, 8-Dec-2014.)
Hypotheses
Ref Expression
grpcl.b  |-  B  =  ( Base `  G
)
grpcl.p  |-  .+  =  ( +g  `  G )
grpinvex.p  |-  .0.  =  ( 0g `  G )
Assertion
Ref Expression
grpideu  |-  ( G  e.  Grp  ->  E! u  e.  B  A. x  e.  B  (
( u  .+  x
)  =  x  /\  ( x  .+  u )  =  x ) )
Distinct variable groups:    x, u, B    u, G, x    u,  .+ , x    x,  .0.
Allowed substitution hint:    .0. ( u)

Proof of Theorem grpideu
StepHypRef Expression
1 grpmnd 14772 . 2  |-  ( G  e.  Grp  ->  G  e.  Mnd )
2 grpcl.b . . 3  |-  B  =  ( Base `  G
)
3 grpcl.p . . 3  |-  .+  =  ( +g  `  G )
42, 3mndideu 14653 . 2  |-  ( G  e.  Mnd  ->  E! u  e.  B  A. x  e.  B  (
( u  .+  x
)  =  x  /\  ( x  .+  u )  =  x ) )
51, 4syl 16 1  |-  ( G  e.  Grp  ->  E! u  e.  B  A. x  e.  B  (
( u  .+  x
)  =  x  /\  ( x  .+  u )  =  x ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 359    = wceq 1649    e. wcel 1721   A.wral 2666   E!wreu 2668   ` cfv 5413  (class class class)co 6040   Basecbs 13424   +g cplusg 13484   0gc0g 13678   Mndcmnd 14639   Grpcgrp 14640
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1662  ax-8 1683  ax-13 1723  ax-14 1725  ax-6 1740  ax-7 1745  ax-11 1757  ax-12 1946  ax-ext 2385  ax-nul 4298  ax-pow 4337
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2258  df-mo 2259  df-clab 2391  df-cleq 2397  df-clel 2400  df-nfc 2529  df-ne 2569  df-ral 2671  df-rex 2672  df-reu 2673  df-rmo 2674  df-rab 2675  df-v 2918  df-sbc 3122  df-dif 3283  df-un 3285  df-in 3287  df-ss 3294  df-nul 3589  df-if 3700  df-sn 3780  df-pr 3781  df-op 3783  df-uni 3976  df-br 4173  df-iota 5377  df-fv 5421  df-ov 6043  df-mnd 14645  df-grp 14767
  Copyright terms: Public domain W3C validator