MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fun0 Unicode version

Theorem fun0 5164
Description: The empty set is a function. Theorem 10.3 of [Quine] p. 65. (Contributed by NM, 7-Apr-1998.)
Assertion
Ref Expression
fun0  |-  Fun  (/)

Proof of Theorem fun0
StepHypRef Expression
1 0ss 3390 . 2  |-  (/)  C_  { <. (/)
,  (/) >. }
2 0ex 4047 . . 3  |-  (/)  e.  _V
32, 2funsn 5157 . 2  |-  Fun  { <.
(/) ,  (/) >. }
4 funss 5131 . 2  |-  ( (/)  C_ 
{ <. (/) ,  (/) >. }  ->  ( Fun  { <. (/) ,  (/) >. }  ->  Fun  (/) ) )
51, 3, 4mp2 19 1  |-  Fun  (/)
Colors of variables: wff set class
Syntax hints:    C_ wss 3078   (/)c0 3362   {csn 3544   <.cop 3547   Fun wfun 4586
This theorem is referenced by:  fn0  5220  f10  5364  strlemor0  13108  strle1  13113  0alg  24922
This theorem was proved from axioms:  ax-1 7  ax-2 8  ax-3 9  ax-mp 10  ax-5 1533  ax-6 1534  ax-7 1535  ax-gen 1536  ax-8 1623  ax-11 1624  ax-14 1626  ax-17 1628  ax-12o 1664  ax-10 1678  ax-9 1684  ax-4 1692  ax-16 1926  ax-ext 2234  ax-sep 4038  ax-nul 4046  ax-pr 4108
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3an 941  df-tru 1315  df-ex 1538  df-nf 1540  df-sb 1883  df-eu 2118  df-mo 2119  df-clab 2240  df-cleq 2246  df-clel 2249  df-nfc 2374  df-ne 2414  df-ral 2513  df-rex 2514  df-rab 2516  df-v 2729  df-dif 3081  df-un 3083  df-in 3085  df-ss 3089  df-nul 3363  df-if 3471  df-sn 3550  df-pr 3551  df-op 3553  df-br 3921  df-opab 3975  df-id 4202  df-xp 4594  df-rel 4595  df-cnv 4596  df-co 4597  df-fun 4602
  Copyright terms: Public domain W3C validator