MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ftc1 Unicode version

Theorem ftc1 19221
Description: The Fundamental Theorem of Calculus, part one. The function formed by varying the right endpoint of an integral is differentiable at  C with derivative  F ( C ) if the original function is continuous at  C. (Contributed by Mario Carneiro, 1-Sep-2014.)
Hypotheses
Ref Expression
ftc1.g  |-  G  =  ( x  e.  ( A [,] B ) 
|->  S. ( A (,) x ) ( F `
 t )  _d t )
ftc1.a  |-  ( ph  ->  A  e.  RR )
ftc1.b  |-  ( ph  ->  B  e.  RR )
ftc1.le  |-  ( ph  ->  A  <_  B )
ftc1.s  |-  ( ph  ->  ( A (,) B
)  C_  D )
ftc1.d  |-  ( ph  ->  D  C_  RR )
ftc1.i  |-  ( ph  ->  F  e.  L ^1 )
ftc1.c  |-  ( ph  ->  C  e.  ( A (,) B ) )
ftc1.f  |-  ( ph  ->  F  e.  ( ( K  CnP  L ) `
 C ) )
ftc1.j  |-  J  =  ( Lt  RR )
ftc1.k  |-  K  =  ( Lt  D )
ftc1.l  |-  L  =  ( TopOpen ` fld )
Assertion
Ref Expression
ftc1  |-  ( ph  ->  C ( RR  _D  G ) ( F `
 C ) )
Distinct variable groups:    x, t, C    t, D, x    t, A, x    t, B, x    ph, t, x    t, F, x    x, L
Allowed substitution hints:    G( x, t)    J( x, t)    K( x, t)    L( t)

Proof of Theorem ftc1
StepHypRef Expression
1 ftc1.j . . . . . . 7  |-  J  =  ( Lt  RR )
2 ftc1.l . . . . . . . 8  |-  L  =  ( TopOpen ` fld )
32tgioo2 18141 . . . . . . 7  |-  ( topGen ` 
ran  (,) )  =  ( Lt  RR )
41, 3eqtr4i 2276 . . . . . 6  |-  J  =  ( topGen `  ran  (,) )
5 retop 18102 . . . . . 6  |-  ( topGen ` 
ran  (,) )  e.  Top
64, 5eqeltri 2323 . . . . 5  |-  J  e. 
Top
76a1i 12 . . . 4  |-  ( ph  ->  J  e.  Top )
8 ftc1.a . . . . 5  |-  ( ph  ->  A  e.  RR )
9 ftc1.b . . . . 5  |-  ( ph  ->  B  e.  RR )
10 iccssre 10609 . . . . 5  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( A [,] B
)  C_  RR )
118, 9, 10syl2anc 645 . . . 4  |-  ( ph  ->  ( A [,] B
)  C_  RR )
12 iooretop 18107 . . . . . 6  |-  ( A (,) B )  e.  ( topGen `  ran  (,) )
1312, 4eleqtrri 2326 . . . . 5  |-  ( A (,) B )  e.  J
1413a1i 12 . . . 4  |-  ( ph  ->  ( A (,) B
)  e.  J )
15 ioossicc 10613 . . . . 5  |-  ( A (,) B )  C_  ( A [,] B )
1615a1i 12 . . . 4  |-  ( ph  ->  ( A (,) B
)  C_  ( A [,] B ) )
17 uniretop 18103 . . . . . 6  |-  RR  =  U. ( topGen `  ran  (,) )
184unieqi 3737 . . . . . 6  |-  U. J  =  U. ( topGen `  ran  (,) )
1917, 18eqtr4i 2276 . . . . 5  |-  RR  =  U. J
2019ssntr 16627 . . . 4  |-  ( ( ( J  e.  Top  /\  ( A [,] B
)  C_  RR )  /\  ( ( A (,) B )  e.  J  /\  ( A (,) B
)  C_  ( A [,] B ) ) )  ->  ( A (,) B )  C_  (
( int `  J
) `  ( A [,] B ) ) )
217, 11, 14, 16, 20syl22anc 1188 . . 3  |-  ( ph  ->  ( A (,) B
)  C_  ( ( int `  J ) `  ( A [,] B ) ) )
22 ftc1.c . . 3  |-  ( ph  ->  C  e.  ( A (,) B ) )
2321, 22sseldd 3104 . 2  |-  ( ph  ->  C  e.  ( ( int `  J ) `
 ( A [,] B ) ) )
24 ftc1.g . . 3  |-  G  =  ( x  e.  ( A [,] B ) 
|->  S. ( A (,) x ) ( F `
 t )  _d t )
25 ftc1.le . . 3  |-  ( ph  ->  A  <_  B )
26 ftc1.s . . 3  |-  ( ph  ->  ( A (,) B
)  C_  D )
27 ftc1.d . . 3  |-  ( ph  ->  D  C_  RR )
28 ftc1.i . . 3  |-  ( ph  ->  F  e.  L ^1 )
29 ftc1.f . . 3  |-  ( ph  ->  F  e.  ( ( K  CnP  L ) `
 C ) )
30 ftc1.k . . 3  |-  K  =  ( Lt  D )
31 eqid 2253 . . 3  |-  ( z  e.  ( ( A [,] B )  \  { C } )  |->  ( ( ( G `  z )  -  ( G `  C )
)  /  ( z  -  C ) ) )  =  ( z  e.  ( ( A [,] B )  \  { C } )  |->  ( ( ( G `  z )  -  ( G `  C )
)  /  ( z  -  C ) ) )
3224, 8, 9, 25, 26, 27, 28, 22, 29, 1, 30, 2, 31ftc1lem6 19220 . 2  |-  ( ph  ->  ( F `  C
)  e.  ( ( z  e.  ( ( A [,] B ) 
\  { C }
)  |->  ( ( ( G `  z )  -  ( G `  C ) )  / 
( z  -  C
) ) ) lim CC  C ) )
33 ax-resscn 8674 . . . 4  |-  RR  C_  CC
3433a1i 12 . . 3  |-  ( ph  ->  RR  C_  CC )
3524, 8, 9, 25, 26, 27, 28, 22, 29, 1, 30, 2ftc1lem3 19217 . . . 4  |-  ( ph  ->  F : D --> CC )
3624, 8, 9, 25, 26, 27, 28, 35ftc1lem2 19215 . . 3  |-  ( ph  ->  G : ( A [,] B ) --> CC )
371, 2, 31, 34, 36, 11eldv 19080 . 2  |-  ( ph  ->  ( C ( RR 
_D  G ) ( F `  C )  <-> 
( C  e.  ( ( int `  J
) `  ( A [,] B ) )  /\  ( F `  C )  e.  ( ( z  e.  ( ( A [,] B )  \  { C } )  |->  ( ( ( G `  z )  -  ( G `  C )
)  /  ( z  -  C ) ) ) lim CC  C ) ) ) )
3823, 32, 37mpbir2and 893 1  |-  ( ph  ->  C ( RR  _D  G ) ( F `
 C ) )
Colors of variables: wff set class
Syntax hints:    -> wi 6    = wceq 1619    e. wcel 1621    \ cdif 3075    C_ wss 3078   {csn 3544   U.cuni 3727   class class class wbr 3920    e. cmpt 3974   ran crn 4581   ` cfv 4592  (class class class)co 5710   CCcc 8615   RRcr 8616    <_ cle 8748    - cmin 8917    / cdiv 9303   (,)cioo 10534   [,]cicc 10537   ↾t crest 13199   TopOpenctopn 13200   topGenctg 13216  ℂfldccnfld 16209   Topctop 16463   intcnt 16586    CnP ccnp 16787   L ^1cibl 18804   S.citg 18805   lim CC climc 19044    _D cdv 19045
This theorem is referenced by:  ftc1cn  19222
This theorem was proved from axioms:  ax-1 7  ax-2 8  ax-3 9  ax-mp 10  ax-5 1533  ax-6 1534  ax-7 1535  ax-gen 1536  ax-8 1623  ax-11 1624  ax-13 1625  ax-14 1626  ax-17 1628  ax-12o 1664  ax-10 1678  ax-9 1684  ax-4 1692  ax-16 1926  ax-ext 2234  ax-rep 4028  ax-sep 4038  ax-nul 4046  ax-pow 4082  ax-pr 4108  ax-un 4403  ax-inf2 7226  ax-cc 7945  ax-cnex 8673  ax-resscn 8674  ax-1cn 8675  ax-icn 8676  ax-addcl 8677  ax-addrcl 8678  ax-mulcl 8679  ax-mulrcl 8680  ax-mulcom 8681  ax-addass 8682  ax-mulass 8683  ax-distr 8684  ax-i2m1 8685  ax-1ne0 8686  ax-1rid 8687  ax-rnegex 8688  ax-rrecex 8689  ax-cnre 8690  ax-pre-lttri 8691  ax-pre-lttrn 8692  ax-pre-ltadd 8693  ax-pre-mulgt0 8694  ax-pre-sup 8695  ax-addf 8696  ax-mulf 8697
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3or 940  df-3an 941  df-tru 1315  df-ex 1538  df-nf 1540  df-sb 1883  df-eu 2118  df-mo 2119  df-clab 2240  df-cleq 2246  df-clel 2249  df-nfc 2374  df-ne 2414  df-nel 2415  df-ral 2513  df-rex 2514  df-reu 2515  df-rab 2516  df-v 2729  df-sbc 2922  df-csb 3010  df-dif 3081  df-un 3083  df-in 3085  df-ss 3089  df-pss 3091  df-nul 3363  df-if 3471  df-pw 3532  df-sn 3550  df-pr 3551  df-tp 3552  df-op 3553  df-uni 3728  df-int 3761  df-iun 3805  df-iin 3806  df-disj 3892  df-br 3921  df-opab 3975  df-mpt 3976  df-tr 4011  df-eprel 4198  df-id 4202  df-po 4207  df-so 4208  df-fr 4245  df-se 4246  df-we 4247  df-ord 4288  df-on 4289  df-lim 4290  df-suc 4291  df-om 4548  df-xp 4594  df-rel 4595  df-cnv 4596  df-co 4597  df-dm 4598  df-rn 4599  df-res 4600  df-ima 4601  df-fun 4602  df-fn 4603  df-f 4604  df-f1 4605  df-fo 4606  df-f1o 4607  df-fv 4608  df-isom 4609  df-ov 5713  df-oprab 5714  df-mpt2 5715  df-of 5930  df-ofr 5931  df-1st 5974  df-2nd 5975  df-iota 6143  df-riota 6190  df-recs 6274  df-rdg 6309  df-1o 6365  df-2o 6366  df-oadd 6369  df-omul 6370  df-er 6546  df-map 6660  df-pm 6661  df-ixp 6704  df-en 6750  df-dom 6751  df-sdom 6752  df-fin 6753  df-fi 7049  df-sup 7078  df-oi 7109  df-card 7456  df-acn 7459  df-cda 7678  df-pnf 8749  df-mnf 8750  df-xr 8751  df-ltxr 8752  df-le 8753  df-sub 8919  df-neg 8920  df-div 9304  df-n 9627  df-2 9684  df-3 9685  df-4 9686  df-5 9687  df-6 9688  df-7 9689  df-8 9690  df-9 9691  df-10 9692  df-n0 9845  df-z 9904  df-dec 10004  df-uz 10110  df-q 10196  df-rp 10234  df-xneg 10331  df-xadd 10332  df-xmul 10333  df-ioo 10538  df-ioc 10539  df-ico 10540  df-icc 10541  df-fz 10661  df-fzo 10749  df-fl 10803  df-mod 10852  df-seq 10925  df-exp 10983  df-hash 11216  df-cj 11461  df-re 11462  df-im 11463  df-sqr 11597  df-abs 11598  df-clim 11839  df-rlim 11840  df-sum 12036  df-struct 13024  df-ndx 13025  df-slot 13026  df-base 13027  df-sets 13028  df-ress 13029  df-plusg 13095  df-mulr 13096  df-starv 13097  df-sca 13098  df-vsca 13099  df-tset 13101  df-ple 13102  df-ds 13104  df-hom 13106  df-cco 13107  df-rest 13201  df-topn 13202  df-topgen 13218  df-pt 13219  df-prds 13222  df-xrs 13277  df-0g 13278  df-gsum 13279  df-qtop 13284  df-imas 13285  df-xps 13287  df-mre 13361  df-mrc 13362  df-acs 13363  df-mnd 14202  df-submnd 14251  df-mulg 14327  df-cntz 14628  df-cmn 14926  df-xmet 16205  df-met 16206  df-bl 16207  df-mopn 16208  df-cnfld 16210  df-top 16468  df-bases 16470  df-topon 16471  df-topsp 16472  df-ntr 16589  df-cn 16789  df-cnp 16790  df-cmp 16946  df-tx 17089  df-hmeo 17278  df-xms 17717  df-ms 17718  df-tms 17719  df-cncf 18214  df-ovol 18656  df-vol 18657  df-mbf 18807  df-itg1 18808  df-itg2 18809  df-ibl 18810  df-itg 18811  df-0p 18857  df-limc 19048  df-dv 19049
  Copyright terms: Public domain W3C validator