Users' Mathboxes Mathbox for Alan Sare < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  exlimexi Unicode version

Theorem exlimexi 26980
Description: Inference similar to Theorem 19.23 of [Margaris] p. 90. (Contributed by Alan Sare, 21-Apr-2013.) (Proof modification is discouraged.) (New usage is discouraged.)
Hypotheses
Ref Expression
exlimexi.1  |-  ( ps 
->  A. x ps )
exlimexi.2  |-  ( E. x ph  ->  ( ph  ->  ps ) )
Assertion
Ref Expression
exlimexi  |-  ( E. x ph  ->  ps )

Proof of Theorem exlimexi
StepHypRef Expression
1 hbe1 1565 . . 3  |-  ( E. x ph  ->  A. x E. x ph )
2 exlimexi.1 . . 3  |-  ( ps 
->  A. x ps )
3 exlimexi.2 . . 3  |-  ( E. x ph  ->  ( ph  ->  ps ) )
41, 2, 3exlimdh 1785 . 2  |-  ( E. x ph  ->  ( E. x ph  ->  ps ) )
54pm2.43i 45 1  |-  ( E. x ph  ->  ps )
Colors of variables: wff set class
Syntax hints:    -> wi 6   A.wal 1532   E.wex 1537
This theorem is referenced by:  sb5ALT  26981  exinst  27086
This theorem was proved from axioms:  ax-1 7  ax-2 8  ax-3 9  ax-mp 10  ax-5 1533  ax-6 1534  ax-gen 1536  ax-4 1692
This theorem depends on definitions:  df-bi 179  df-an 362  df-ex 1538  df-nf 1540
  Copyright terms: Public domain W3C validator