MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  eulerth Unicode version

Theorem eulerth 12725
Description: Euler's theorem, a generalization of Fermat's little theorem. If  A and  N are coprime, then  A ^ phi ( N )  ==  1, mod  N. (Contributed by Mario Carneiro, 28-Feb-2014.)
Assertion
Ref Expression
eulerth  |-  ( ( N  e.  NN  /\  A  e.  ZZ  /\  ( A  gcd  N )  =  1 )  ->  (
( A ^ ( phi `  N ) )  mod  N )  =  ( 1  mod  N
) )

Proof of Theorem eulerth
StepHypRef Expression
1 phicl 12711 . . . . . . . 8  |-  ( N  e.  NN  ->  ( phi `  N )  e.  NN )
21nnnn0d 9897 . . . . . . 7  |-  ( N  e.  NN  ->  ( phi `  N )  e. 
NN0 )
3 hashfz1 11223 . . . . . . 7  |-  ( ( phi `  N )  e.  NN0  ->  ( # `  ( 1 ... ( phi `  N ) ) )  =  ( phi `  N ) )
42, 3syl 17 . . . . . 6  |-  ( N  e.  NN  ->  ( # `
 ( 1 ... ( phi `  N
) ) )  =  ( phi `  N
) )
5 dfphi2 12716 . . . . . 6  |-  ( N  e.  NN  ->  ( phi `  N )  =  ( # `  {
k  e.  ( 0..^ N )  |  ( k  gcd  N )  =  1 } ) )
64, 5eqtrd 2285 . . . . 5  |-  ( N  e.  NN  ->  ( # `
 ( 1 ... ( phi `  N
) ) )  =  ( # `  {
k  e.  ( 0..^ N )  |  ( k  gcd  N )  =  1 } ) )
763ad2ant1 981 . . . 4  |-  ( ( N  e.  NN  /\  A  e.  ZZ  /\  ( A  gcd  N )  =  1 )  ->  ( # `
 ( 1 ... ( phi `  N
) ) )  =  ( # `  {
k  e.  ( 0..^ N )  |  ( k  gcd  N )  =  1 } ) )
8 fzfi 10912 . . . . 5  |-  ( 1 ... ( phi `  N ) )  e. 
Fin
9 fzofi 10914 . . . . . 6  |-  ( 0..^ N )  e.  Fin
10 ssrab2 3179 . . . . . 6  |-  { k  e.  ( 0..^ N )  |  ( k  gcd  N )  =  1 }  C_  (
0..^ N )
11 ssfi 6968 . . . . . 6  |-  ( ( ( 0..^ N )  e.  Fin  /\  {
k  e.  ( 0..^ N )  |  ( k  gcd  N )  =  1 }  C_  ( 0..^ N ) )  ->  { k  e.  ( 0..^ N )  |  ( k  gcd 
N )  =  1 }  e.  Fin )
129, 10, 11mp2an 656 . . . . 5  |-  { k  e.  ( 0..^ N )  |  ( k  gcd  N )  =  1 }  e.  Fin
13 hashen 11224 . . . . 5  |-  ( ( ( 1 ... ( phi `  N ) )  e.  Fin  /\  {
k  e.  ( 0..^ N )  |  ( k  gcd  N )  =  1 }  e.  Fin )  ->  ( (
# `  ( 1 ... ( phi `  N
) ) )  =  ( # `  {
k  e.  ( 0..^ N )  |  ( k  gcd  N )  =  1 } )  <-> 
( 1 ... ( phi `  N ) ) 
~~  { k  e.  ( 0..^ N )  |  ( k  gcd 
N )  =  1 } ) )
148, 12, 13mp2an 656 . . . 4  |-  ( (
# `  ( 1 ... ( phi `  N
) ) )  =  ( # `  {
k  e.  ( 0..^ N )  |  ( k  gcd  N )  =  1 } )  <-> 
( 1 ... ( phi `  N ) ) 
~~  { k  e.  ( 0..^ N )  |  ( k  gcd 
N )  =  1 } )
157, 14sylib 190 . . 3  |-  ( ( N  e.  NN  /\  A  e.  ZZ  /\  ( A  gcd  N )  =  1 )  ->  (
1 ... ( phi `  N ) )  ~~  { k  e.  ( 0..^ N )  |  ( k  gcd  N )  =  1 } )
16 bren 6757 . . 3  |-  ( ( 1 ... ( phi `  N ) )  ~~  { k  e.  ( 0..^ N )  |  ( k  gcd  N )  =  1 }  <->  E. f 
f : ( 1 ... ( phi `  N ) ) -1-1-onto-> { k  e.  ( 0..^ N )  |  ( k  gcd  N )  =  1 } )
1715, 16sylib 190 . 2  |-  ( ( N  e.  NN  /\  A  e.  ZZ  /\  ( A  gcd  N )  =  1 )  ->  E. f 
f : ( 1 ... ( phi `  N ) ) -1-1-onto-> { k  e.  ( 0..^ N )  |  ( k  gcd  N )  =  1 } )
18 simpl 445 . . . . 5  |-  ( ( ( N  e.  NN  /\  A  e.  ZZ  /\  ( A  gcd  N )  =  1 )  /\  f : ( 1 ... ( phi `  N
) ) -1-1-onto-> { k  e.  ( 0..^ N )  |  ( k  gcd  N
)  =  1 } )  ->  ( N  e.  NN  /\  A  e.  ZZ  /\  ( A  gcd  N )  =  1 ) )
19 oveq1 5717 . . . . . . 7  |-  ( k  =  y  ->  (
k  gcd  N )  =  ( y  gcd 
N ) )
2019eqeq1d 2261 . . . . . 6  |-  ( k  =  y  ->  (
( k  gcd  N
)  =  1  <->  (
y  gcd  N )  =  1 ) )
2120cbvrabv 2726 . . . . 5  |-  { k  e.  ( 0..^ N )  |  ( k  gcd  N )  =  1 }  =  {
y  e.  ( 0..^ N )  |  ( y  gcd  N )  =  1 }
22 eqid 2253 . . . . 5  |-  ( 1 ... ( phi `  N ) )  =  ( 1 ... ( phi `  N ) )
23 simpr 449 . . . . 5  |-  ( ( ( N  e.  NN  /\  A  e.  ZZ  /\  ( A  gcd  N )  =  1 )  /\  f : ( 1 ... ( phi `  N
) ) -1-1-onto-> { k  e.  ( 0..^ N )  |  ( k  gcd  N
)  =  1 } )  ->  f :
( 1 ... ( phi `  N ) ) -1-1-onto-> { k  e.  ( 0..^ N )  |  ( k  gcd  N )  =  1 } )
24 fveq2 5377 . . . . . . . 8  |-  ( k  =  x  ->  (
f `  k )  =  ( f `  x ) )
2524oveq2d 5726 . . . . . . 7  |-  ( k  =  x  ->  ( A  x.  ( f `  k ) )  =  ( A  x.  (
f `  x )
) )
2625oveq1d 5725 . . . . . 6  |-  ( k  =  x  ->  (
( A  x.  (
f `  k )
)  mod  N )  =  ( ( A  x.  ( f `  x ) )  mod 
N ) )
2726cbvmptv 4008 . . . . 5  |-  ( k  e.  ( 1 ... ( phi `  N
) )  |->  ( ( A  x.  ( f `
 k ) )  mod  N ) )  =  ( x  e.  ( 1 ... ( phi `  N ) ) 
|->  ( ( A  x.  ( f `  x
) )  mod  N
) )
2818, 21, 22, 23, 27eulerthlem2 12724 . . . 4  |-  ( ( ( N  e.  NN  /\  A  e.  ZZ  /\  ( A  gcd  N )  =  1 )  /\  f : ( 1 ... ( phi `  N
) ) -1-1-onto-> { k  e.  ( 0..^ N )  |  ( k  gcd  N
)  =  1 } )  ->  ( ( A ^ ( phi `  N ) )  mod 
N )  =  ( 1  mod  N ) )
2928ex 425 . . 3  |-  ( ( N  e.  NN  /\  A  e.  ZZ  /\  ( A  gcd  N )  =  1 )  ->  (
f : ( 1 ... ( phi `  N ) ) -1-1-onto-> { k  e.  ( 0..^ N )  |  ( k  gcd  N )  =  1 }  ->  (
( A ^ ( phi `  N ) )  mod  N )  =  ( 1  mod  N
) ) )
3029exlimdv 1932 . 2  |-  ( ( N  e.  NN  /\  A  e.  ZZ  /\  ( A  gcd  N )  =  1 )  ->  ( E. f  f :
( 1 ... ( phi `  N ) ) -1-1-onto-> { k  e.  ( 0..^ N )  |  ( k  gcd  N )  =  1 }  ->  ( ( A ^ ( phi `  N ) )  mod  N )  =  ( 1  mod  N
) ) )
3117, 30mpd 16 1  |-  ( ( N  e.  NN  /\  A  e.  ZZ  /\  ( A  gcd  N )  =  1 )  ->  (
( A ^ ( phi `  N ) )  mod  N )  =  ( 1  mod  N
) )
Colors of variables: wff set class
Syntax hints:    -> wi 6    <-> wb 178    /\ wa 360    /\ w3a 939   E.wex 1537    = wceq 1619    e. wcel 1621   {crab 2512    C_ wss 3078   class class class wbr 3920    e. cmpt 3974   -1-1-onto->wf1o 4591   ` cfv 4592  (class class class)co 5710    ~~ cen 6746   Fincfn 6749   0cc0 8617   1c1 8618    x. cmul 8622   NNcn 9626   NN0cn0 9844   ZZcz 9903   ...cfz 10660  ..^cfzo 10748    mod cmo 10851   ^cexp 10982   #chash 11215    gcd cgcd 12559   phicphi 12706
This theorem is referenced by:  fermltl  12726  prmdiv  12727  odzcllem  12731  odzphi  12735  lgslem1  20367  lgsqrlem2  20413
This theorem was proved from axioms:  ax-1 7  ax-2 8  ax-3 9  ax-mp 10  ax-5 1533  ax-6 1534  ax-7 1535  ax-gen 1536  ax-8 1623  ax-11 1624  ax-13 1625  ax-14 1626  ax-17 1628  ax-12o 1664  ax-10 1678  ax-9 1684  ax-4 1692  ax-16 1926  ax-ext 2234  ax-rep 4028  ax-sep 4038  ax-nul 4046  ax-pow 4082  ax-pr 4108  ax-un 4403  ax-cnex 8673  ax-resscn 8674  ax-1cn 8675  ax-icn 8676  ax-addcl 8677  ax-addrcl 8678  ax-mulcl 8679  ax-mulrcl 8680  ax-mulcom 8681  ax-addass 8682  ax-mulass 8683  ax-distr 8684  ax-i2m1 8685  ax-1ne0 8686  ax-1rid 8687  ax-rnegex 8688  ax-rrecex 8689  ax-cnre 8690  ax-pre-lttri 8691  ax-pre-lttrn 8692  ax-pre-ltadd 8693  ax-pre-mulgt0 8694  ax-pre-sup 8695
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3or 940  df-3an 941  df-tru 1315  df-ex 1538  df-nf 1540  df-sb 1883  df-eu 2118  df-mo 2119  df-clab 2240  df-cleq 2246  df-clel 2249  df-nfc 2374  df-ne 2414  df-nel 2415  df-ral 2513  df-rex 2514  df-reu 2515  df-rab 2516  df-v 2729  df-sbc 2922  df-csb 3010  df-dif 3081  df-un 3083  df-in 3085  df-ss 3089  df-pss 3091  df-nul 3363  df-if 3471  df-pw 3532  df-sn 3550  df-pr 3551  df-tp 3552  df-op 3553  df-uni 3728  df-int 3761  df-iun 3805  df-br 3921  df-opab 3975  df-mpt 3976  df-tr 4011  df-eprel 4198  df-id 4202  df-po 4207  df-so 4208  df-fr 4245  df-we 4247  df-ord 4288  df-on 4289  df-lim 4290  df-suc 4291  df-om 4548  df-xp 4594  df-rel 4595  df-cnv 4596  df-co 4597  df-dm 4598  df-rn 4599  df-res 4600  df-ima 4601  df-fun 4602  df-fn 4603  df-f 4604  df-f1 4605  df-fo 4606  df-f1o 4607  df-fv 4608  df-ov 5713  df-oprab 5714  df-mpt2 5715  df-1st 5974  df-2nd 5975  df-iota 6143  df-riota 6190  df-recs 6274  df-rdg 6309  df-1o 6365  df-oadd 6369  df-er 6546  df-map 6660  df-en 6750  df-dom 6751  df-sdom 6752  df-fin 6753  df-sup 7078  df-card 7456  df-pnf 8749  df-mnf 8750  df-xr 8751  df-ltxr 8752  df-le 8753  df-sub 8919  df-neg 8920  df-div 9304  df-n 9627  df-2 9684  df-3 9685  df-n0 9845  df-z 9904  df-uz 10110  df-rp 10234  df-fz 10661  df-fzo 10749  df-fl 10803  df-mod 10852  df-seq 10925  df-exp 10983  df-hash 11216  df-cj 11461  df-re 11462  df-im 11463  df-sqr 11597  df-abs 11598  df-divides 12406  df-gcd 12560  df-phi 12708
  Copyright terms: Public domain W3C validator