Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  eucalgval Unicode version

Theorem eucalgval 12626
 Description: Euclid's Algorithm computes the greatest common divisor of two nonnegative integers by repeatedly replacing the larger of them with its remainder modulo the smaller until the remainder is 0. The value of the step function for Euclid's Algorithm. (Contributed by Paul Chapman, 31-Mar-2011.) (Revised by Mario Carneiro, 28-May-2014.)
Hypothesis
Ref Expression
eucalgval.1
Assertion
Ref Expression
eucalgval
Distinct variable group:   ,,
Allowed substitution hints:   (,)

Proof of Theorem eucalgval
StepHypRef Expression
1 df-ov 5713 . . 3
2 xp1st 6001 . . . 4
3 xp2nd 6002 . . . 4
4 eucalgval.1 . . . . 5
54eucalgval2 12625 . . . 4
62, 3, 5syl2anc 645 . . 3
71, 6syl5eqr 2299 . 2
8 1st2nd2 6011 . . 3
98fveq2d 5381 . 2
108fveq2d 5381 . . . . 5
11 df-ov 5713 . . . . 5
1210, 11syl6eqr 2303 . . . 4
1312opeq2d 3703 . . 3
148, 13ifeq12d 3486 . 2
157, 9, 143eqtr4d 2295 1
 Colors of variables: wff set class Syntax hints:   wi 6   wceq 1619   wcel 1621  cif 3470  cop 3547   cxp 4578  cfv 4592  (class class class)co 5710   cmpt2 5712  c1st 5972  c2nd 5973  cc0 8617  cn0 9844   cmo 10851 This theorem is referenced by:  eucalginv  12628  eucalglt  12629 This theorem was proved from axioms:  ax-1 7  ax-2 8  ax-3 9  ax-mp 10  ax-5 1533  ax-6 1534  ax-7 1535  ax-gen 1536  ax-8 1623  ax-11 1624  ax-13 1625  ax-14 1626  ax-17 1628  ax-12o 1664  ax-10 1678  ax-9 1684  ax-4 1692  ax-16 1926  ax-ext 2234  ax-sep 4038  ax-nul 4046  ax-pr 4108  ax-un 4403 This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3an 941  df-tru 1315  df-ex 1538  df-nf 1540  df-sb 1883  df-eu 2118  df-mo 2119  df-clab 2240  df-cleq 2246  df-clel 2249  df-nfc 2374  df-ne 2414  df-ral 2513  df-rex 2514  df-rab 2516  df-v 2729  df-sbc 2922  df-dif 3081  df-un 3083  df-in 3085  df-ss 3089  df-nul 3363  df-if 3471  df-sn 3550  df-pr 3551  df-op 3553  df-uni 3728  df-br 3921  df-opab 3975  df-mpt 3976  df-id 4202  df-xp 4594  df-rel 4595  df-cnv 4596  df-co 4597  df-dm 4598  df-rn 4599  df-res 4600  df-ima 4601  df-fun 4602  df-fv 4608  df-ov 5713  df-oprab 5714  df-mpt2 5715  df-1st 5974  df-2nd 5975
 Copyright terms: Public domain W3C validator