Users' Mathboxes Mathbox for Mario Carneiro < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  erdsze2 Unicode version

Theorem erdsze2 22907
Description: Generalize the statement of the Erdős-Szekeres theorem erdsze 22904 to "sequences" indexed by an arbitrary subset of  RR, which can be infinite. (Contributed by Mario Carneiro, 22-Jan-2015.)
Hypotheses
Ref Expression
erdsze2.r  |-  ( ph  ->  R  e.  NN )
erdsze2.s  |-  ( ph  ->  S  e.  NN )
erdsze2.f  |-  ( ph  ->  F : A -1-1-> RR )
erdsze2.a  |-  ( ph  ->  A  C_  RR )
erdsze2.l  |-  ( ph  ->  ( ( R  - 
1 )  x.  ( S  -  1 ) )  <  ( # `  A ) )
Assertion
Ref Expression
erdsze2  |-  ( ph  ->  E. s  e.  ~P  A ( ( R  <_  ( # `  s
)  /\  ( F  |`  s )  Isom  <  ,  <  ( s ,  ( F " s
) ) )  \/  ( S  <_  ( # `
 s )  /\  ( F  |`  s ) 
Isom  <  ,  `'  <  ( s ,  ( F
" s ) ) ) ) )
Distinct variable groups:    A, s    F, s    R, s    S, s    ph, s

Proof of Theorem erdsze2
StepHypRef Expression
1 erdsze2.r . . 3  |-  ( ph  ->  R  e.  NN )
2 erdsze2.s . . 3  |-  ( ph  ->  S  e.  NN )
3 erdsze2.f . . 3  |-  ( ph  ->  F : A -1-1-> RR )
4 erdsze2.a . . 3  |-  ( ph  ->  A  C_  RR )
5 eqid 2253 . . 3  |-  ( ( R  -  1 )  x.  ( S  - 
1 ) )  =  ( ( R  - 
1 )  x.  ( S  -  1 ) )
6 erdsze2.l . . 3  |-  ( ph  ->  ( ( R  - 
1 )  x.  ( S  -  1 ) )  <  ( # `  A ) )
71, 2, 3, 4, 5, 6erdsze2lem1 22905 . 2  |-  ( ph  ->  E. f ( f : ( 1 ... ( ( ( R  -  1 )  x.  ( S  -  1 ) )  +  1 ) ) -1-1-> A  /\  f  Isom  <  ,  <  ( ( 1 ... (
( ( R  - 
1 )  x.  ( S  -  1 ) )  +  1 ) ) ,  ran  f
) ) )
81adantr 453 . . . . 5  |-  ( (
ph  /\  ( f : ( 1 ... ( ( ( R  -  1 )  x.  ( S  -  1 ) )  +  1 ) ) -1-1-> A  /\  f  Isom  <  ,  <  ( ( 1 ... (
( ( R  - 
1 )  x.  ( S  -  1 ) )  +  1 ) ) ,  ran  f
) ) )  ->  R  e.  NN )
92adantr 453 . . . . 5  |-  ( (
ph  /\  ( f : ( 1 ... ( ( ( R  -  1 )  x.  ( S  -  1 ) )  +  1 ) ) -1-1-> A  /\  f  Isom  <  ,  <  ( ( 1 ... (
( ( R  - 
1 )  x.  ( S  -  1 ) )  +  1 ) ) ,  ran  f
) ) )  ->  S  e.  NN )
103adantr 453 . . . . 5  |-  ( (
ph  /\  ( f : ( 1 ... ( ( ( R  -  1 )  x.  ( S  -  1 ) )  +  1 ) ) -1-1-> A  /\  f  Isom  <  ,  <  ( ( 1 ... (
( ( R  - 
1 )  x.  ( S  -  1 ) )  +  1 ) ) ,  ran  f
) ) )  ->  F : A -1-1-> RR )
114adantr 453 . . . . 5  |-  ( (
ph  /\  ( f : ( 1 ... ( ( ( R  -  1 )  x.  ( S  -  1 ) )  +  1 ) ) -1-1-> A  /\  f  Isom  <  ,  <  ( ( 1 ... (
( ( R  - 
1 )  x.  ( S  -  1 ) )  +  1 ) ) ,  ran  f
) ) )  ->  A  C_  RR )
126adantr 453 . . . . 5  |-  ( (
ph  /\  ( f : ( 1 ... ( ( ( R  -  1 )  x.  ( S  -  1 ) )  +  1 ) ) -1-1-> A  /\  f  Isom  <  ,  <  ( ( 1 ... (
( ( R  - 
1 )  x.  ( S  -  1 ) )  +  1 ) ) ,  ran  f
) ) )  -> 
( ( R  - 
1 )  x.  ( S  -  1 ) )  <  ( # `  A ) )
13 simprl 735 . . . . 5  |-  ( (
ph  /\  ( f : ( 1 ... ( ( ( R  -  1 )  x.  ( S  -  1 ) )  +  1 ) ) -1-1-> A  /\  f  Isom  <  ,  <  ( ( 1 ... (
( ( R  - 
1 )  x.  ( S  -  1 ) )  +  1 ) ) ,  ran  f
) ) )  -> 
f : ( 1 ... ( ( ( R  -  1 )  x.  ( S  - 
1 ) )  +  1 ) ) -1-1-> A
)
14 simprr 736 . . . . 5  |-  ( (
ph  /\  ( f : ( 1 ... ( ( ( R  -  1 )  x.  ( S  -  1 ) )  +  1 ) ) -1-1-> A  /\  f  Isom  <  ,  <  ( ( 1 ... (
( ( R  - 
1 )  x.  ( S  -  1 ) )  +  1 ) ) ,  ran  f
) ) )  -> 
f  Isom  <  ,  <  ( ( 1 ... (
( ( R  - 
1 )  x.  ( S  -  1 ) )  +  1 ) ) ,  ran  f
) )
158, 9, 10, 11, 5, 12, 13, 14erdsze2lem2 22906 . . . 4  |-  ( (
ph  /\  ( f : ( 1 ... ( ( ( R  -  1 )  x.  ( S  -  1 ) )  +  1 ) ) -1-1-> A  /\  f  Isom  <  ,  <  ( ( 1 ... (
( ( R  - 
1 )  x.  ( S  -  1 ) )  +  1 ) ) ,  ran  f
) ) )  ->  E. s  e.  ~P  A ( ( R  <_  ( # `  s
)  /\  ( F  |`  s )  Isom  <  ,  <  ( s ,  ( F " s
) ) )  \/  ( S  <_  ( # `
 s )  /\  ( F  |`  s ) 
Isom  <  ,  `'  <  ( s ,  ( F
" s ) ) ) ) )
1615ex 425 . . 3  |-  ( ph  ->  ( ( f : ( 1 ... (
( ( R  - 
1 )  x.  ( S  -  1 ) )  +  1 ) ) -1-1-> A  /\  f  Isom  <  ,  <  (
( 1 ... (
( ( R  - 
1 )  x.  ( S  -  1 ) )  +  1 ) ) ,  ran  f
) )  ->  E. s  e.  ~P  A ( ( R  <_  ( # `  s
)  /\  ( F  |`  s )  Isom  <  ,  <  ( s ,  ( F " s
) ) )  \/  ( S  <_  ( # `
 s )  /\  ( F  |`  s ) 
Isom  <  ,  `'  <  ( s ,  ( F
" s ) ) ) ) ) )
1716exlimdv 1932 . 2  |-  ( ph  ->  ( E. f ( f : ( 1 ... ( ( ( R  -  1 )  x.  ( S  - 
1 ) )  +  1 ) ) -1-1-> A  /\  f  Isom  <  ,  <  ( ( 1 ... ( ( ( R  -  1 )  x.  ( S  -  1 ) )  +  1 ) ) ,  ran  f ) )  ->  E. s  e.  ~P  A ( ( R  <_  ( # `  s
)  /\  ( F  |`  s )  Isom  <  ,  <  ( s ,  ( F " s
) ) )  \/  ( S  <_  ( # `
 s )  /\  ( F  |`  s ) 
Isom  <  ,  `'  <  ( s ,  ( F
" s ) ) ) ) ) )
187, 17mpd 16 1  |-  ( ph  ->  E. s  e.  ~P  A ( ( R  <_  ( # `  s
)  /\  ( F  |`  s )  Isom  <  ,  <  ( s ,  ( F " s
) ) )  \/  ( S  <_  ( # `
 s )  /\  ( F  |`  s ) 
Isom  <  ,  `'  <  ( s ,  ( F
" s ) ) ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 6    \/ wo 359    /\ wa 360   E.wex 1537    e. wcel 1621   E.wrex 2510    C_ wss 3078   ~Pcpw 3530   class class class wbr 3920   `'ccnv 4579   ran crn 4581    |` cres 4582   "cima 4583   -1-1->wf1 4589   ` cfv 4592    Isom wiso 4593  (class class class)co 5710   RRcr 8616   1c1 8618    + caddc 8620    x. cmul 8622    < clt 8747    <_ cle 8748    - cmin 8917   NNcn 9626   ...cfz 10660   #chash 11215
This theorem was proved from axioms:  ax-1 7  ax-2 8  ax-3 9  ax-mp 10  ax-5 1533  ax-6 1534  ax-7 1535  ax-gen 1536  ax-8 1623  ax-11 1624  ax-13 1625  ax-14 1626  ax-17 1628  ax-12o 1664  ax-10 1678  ax-9 1684  ax-4 1692  ax-16 1926  ax-ext 2234  ax-rep 4028  ax-sep 4038  ax-nul 4046  ax-pow 4082  ax-pr 4108  ax-un 4403  ax-cnex 8673  ax-resscn 8674  ax-1cn 8675  ax-icn 8676  ax-addcl 8677  ax-addrcl 8678  ax-mulcl 8679  ax-mulrcl 8680  ax-mulcom 8681  ax-addass 8682  ax-mulass 8683  ax-distr 8684  ax-i2m1 8685  ax-1ne0 8686  ax-1rid 8687  ax-rnegex 8688  ax-rrecex 8689  ax-cnre 8690  ax-pre-lttri 8691  ax-pre-lttrn 8692  ax-pre-ltadd 8693  ax-pre-mulgt0 8694  ax-pre-sup 8695
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3or 940  df-3an 941  df-tru 1315  df-ex 1538  df-nf 1540  df-sb 1883  df-eu 2118  df-mo 2119  df-clab 2240  df-cleq 2246  df-clel 2249  df-nfc 2374  df-ne 2414  df-nel 2415  df-ral 2513  df-rex 2514  df-reu 2515  df-rab 2516  df-v 2729  df-sbc 2922  df-csb 3010  df-dif 3081  df-un 3083  df-in 3085  df-ss 3089  df-pss 3091  df-nul 3363  df-if 3471  df-pw 3532  df-sn 3550  df-pr 3551  df-tp 3552  df-op 3553  df-uni 3728  df-int 3761  df-iun 3805  df-br 3921  df-opab 3975  df-mpt 3976  df-tr 4011  df-eprel 4198  df-id 4202  df-po 4207  df-so 4208  df-fr 4245  df-se 4246  df-we 4247  df-ord 4288  df-on 4289  df-lim 4290  df-suc 4291  df-om 4548  df-xp 4594  df-rel 4595  df-cnv 4596  df-co 4597  df-dm 4598  df-rn 4599  df-res 4600  df-ima 4601  df-fun 4602  df-fn 4603  df-f 4604  df-f1 4605  df-fo 4606  df-f1o 4607  df-fv 4608  df-isom 4609  df-ov 5713  df-oprab 5714  df-mpt2 5715  df-1st 5974  df-2nd 5975  df-iota 6143  df-riota 6190  df-recs 6274  df-rdg 6309  df-1o 6365  df-2o 6366  df-oadd 6369  df-er 6546  df-map 6660  df-en 6750  df-dom 6751  df-sdom 6752  df-fin 6753  df-sup 7078  df-oi 7109  df-card 7456  df-cda 7678  df-pnf 8749  df-mnf 8750  df-xr 8751  df-ltxr 8752  df-le 8753  df-sub 8919  df-neg 8920  df-n 9627  df-n0 9845  df-z 9904  df-uz 10110  df-fz 10661  df-hash 11216
  Copyright terms: Public domain W3C validator