Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  eqlkr4 Unicode version

Theorem eqlkr4 29428
Description: Two functionals with the same kernel are the same up to a constant. (Contributed by NM, 4-Feb-2015.)
Hypotheses
Ref Expression
eqlkr4.s  |-  S  =  (Scalar `  W )
eqlkr4.r  |-  R  =  ( Base `  S
)
eqlkr4.f  |-  F  =  (LFnl `  W )
eqlkr4.k  |-  K  =  (LKer `  W )
eqlkr4.d  |-  D  =  (LDual `  W )
eqlkr4.t  |-  .x.  =  ( .s `  D )
eqlkr4.w  |-  ( ph  ->  W  e.  LVec )
eqlkr4.g  |-  ( ph  ->  G  e.  F )
eqlkr4.h  |-  ( ph  ->  H  e.  F )
eqlkr4.e  |-  ( ph  ->  ( K `  G
)  =  ( K `
 H ) )
Assertion
Ref Expression
eqlkr4  |-  ( ph  ->  E. r  e.  R  H  =  ( r  .x.  G ) )
Distinct variable groups:    F, r    G, r    H, r    K, r    R, r    S, r    W, r    ph, r
Allowed substitution hints:    D( r)    .x. ( r)

Proof of Theorem eqlkr4
StepHypRef Expression
1 eqlkr4.w . . 3  |-  ( ph  ->  W  e.  LVec )
2 eqlkr4.g . . 3  |-  ( ph  ->  G  e.  F )
3 eqlkr4.h . . 3  |-  ( ph  ->  H  e.  F )
4 eqlkr4.e . . 3  |-  ( ph  ->  ( K `  G
)  =  ( K `
 H ) )
5 eqlkr4.s . . . 4  |-  S  =  (Scalar `  W )
6 eqlkr4.r . . . 4  |-  R  =  ( Base `  S
)
7 eqid 2285 . . . 4  |-  ( .r
`  S )  =  ( .r `  S
)
8 eqid 2285 . . . 4  |-  ( Base `  W )  =  (
Base `  W )
9 eqlkr4.f . . . 4  |-  F  =  (LFnl `  W )
10 eqlkr4.k . . . 4  |-  K  =  (LKer `  W )
115, 6, 7, 8, 9, 10eqlkr2 29363 . . 3  |-  ( ( W  e.  LVec  /\  ( G  e.  F  /\  H  e.  F )  /\  ( K `  G
)  =  ( K `
 H ) )  ->  E. r  e.  R  H  =  ( G  o F ( .r `  S ) ( (
Base `  W )  X.  { r } ) ) )
121, 2, 3, 4, 11syl121anc 1187 . 2  |-  ( ph  ->  E. r  e.  R  H  =  ( G  o F ( .r `  S ) ( (
Base `  W )  X.  { r } ) ) )
13 eqlkr4.d . . . . 5  |-  D  =  (LDual `  W )
14 eqlkr4.t . . . . 5  |-  .x.  =  ( .s `  D )
151adantr 451 . . . . 5  |-  ( (
ph  /\  r  e.  R )  ->  W  e.  LVec )
16 simpr 447 . . . . 5  |-  ( (
ph  /\  r  e.  R )  ->  r  e.  R )
172adantr 451 . . . . 5  |-  ( (
ph  /\  r  e.  R )  ->  G  e.  F )
189, 8, 5, 6, 7, 13, 14, 15, 16, 17ldualvs 29400 . . . 4  |-  ( (
ph  /\  r  e.  R )  ->  (
r  .x.  G )  =  ( G  o F ( .r `  S ) ( (
Base `  W )  X.  { r } ) ) )
1918eqeq2d 2296 . . 3  |-  ( (
ph  /\  r  e.  R )  ->  ( H  =  ( r  .x.  G )  <->  H  =  ( G  o F
( .r `  S
) ( ( Base `  W )  X.  {
r } ) ) ) )
2019rexbidva 2562 . 2  |-  ( ph  ->  ( E. r  e.  R  H  =  ( r  .x.  G )  <->  E. r  e.  R  H  =  ( G  o F ( .r `  S ) ( (
Base `  W )  X.  { r } ) ) ) )
2112, 20mpbird 223 1  |-  ( ph  ->  E. r  e.  R  H  =  ( r  .x.  G ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 358    = wceq 1625    e. wcel 1686   E.wrex 2546   {csn 3642    X. cxp 4689   ` cfv 5257  (class class class)co 5860    o Fcof 6078   Basecbs 13150   .rcmulr 13211  Scalarcsca 13213   .scvsca 13214   LVecclvec 15857  LFnlclfn 29320  LKerclk 29348  LDualcld 29386
This theorem is referenced by:  lkrss2N  29432  lcfrlem16  31821  mapdrvallem2  31908
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1535  ax-5 1546  ax-17 1605  ax-9 1637  ax-8 1645  ax-13 1688  ax-14 1690  ax-6 1705  ax-7 1710  ax-11 1717  ax-12 1868  ax-ext 2266  ax-rep 4133  ax-sep 4143  ax-nul 4151  ax-pow 4190  ax-pr 4216  ax-un 4514  ax-cnex 8795  ax-resscn 8796  ax-1cn 8797  ax-icn 8798  ax-addcl 8799  ax-addrcl 8800  ax-mulcl 8801  ax-mulrcl 8802  ax-mulcom 8803  ax-addass 8804  ax-mulass 8805  ax-distr 8806  ax-i2m1 8807  ax-1ne0 8808  ax-1rid 8809  ax-rnegex 8810  ax-rrecex 8811  ax-cnre 8812  ax-pre-lttri 8813  ax-pre-lttrn 8814  ax-pre-ltadd 8815  ax-pre-mulgt0 8816
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1531  df-nf 1534  df-sb 1632  df-eu 2149  df-mo 2150  df-clab 2272  df-cleq 2278  df-clel 2281  df-nfc 2410  df-ne 2450  df-nel 2451  df-ral 2550  df-rex 2551  df-reu 2552  df-rmo 2553  df-rab 2554  df-v 2792  df-sbc 2994  df-csb 3084  df-dif 3157  df-un 3159  df-in 3161  df-ss 3168  df-pss 3170  df-nul 3458  df-if 3568  df-pw 3629  df-sn 3648  df-pr 3649  df-tp 3650  df-op 3651  df-uni 3830  df-int 3865  df-iun 3909  df-br 4026  df-opab 4080  df-mpt 4081  df-tr 4116  df-eprel 4307  df-id 4311  df-po 4316  df-so 4317  df-fr 4354  df-we 4356  df-ord 4397  df-on 4398  df-lim 4399  df-suc 4400  df-om 4659  df-xp 4697  df-rel 4698  df-cnv 4699  df-co 4700  df-dm 4701  df-rn 4702  df-res 4703  df-ima 4704  df-iota 5221  df-fun 5259  df-fn 5260  df-f 5261  df-f1 5262  df-fo 5263  df-f1o 5264  df-fv 5265  df-ov 5863  df-oprab 5864  df-mpt2 5865  df-of 6080  df-1st 6124  df-2nd 6125  df-tpos 6236  df-riota 6306  df-recs 6390  df-rdg 6425  df-1o 6481  df-oadd 6485  df-er 6662  df-map 6776  df-en 6866  df-dom 6867  df-sdom 6868  df-fin 6869  df-pnf 8871  df-mnf 8872  df-xr 8873  df-ltxr 8874  df-le 8875  df-sub 9041  df-neg 9042  df-nn 9749  df-2 9806  df-3 9807  df-4 9808  df-5 9809  df-6 9810  df-n0 9968  df-z 10027  df-uz 10233  df-fz 10785  df-struct 13152  df-ndx 13153  df-slot 13154  df-base 13155  df-sets 13156  df-ress 13157  df-plusg 13223  df-mulr 13224  df-sca 13226  df-vsca 13227  df-0g 13406  df-mnd 14369  df-grp 14491  df-minusg 14492  df-sbg 14493  df-cmn 15093  df-abl 15094  df-mgp 15328  df-rng 15342  df-ur 15344  df-oppr 15407  df-dvdsr 15425  df-unit 15426  df-invr 15456  df-drng 15516  df-lmod 15631  df-lvec 15858  df-lfl 29321  df-lkr 29349  df-ldual 29387
  Copyright terms: Public domain W3C validator