MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  elprg Unicode version

Theorem elprg 3561
Description: A member of an unordered pair of classes is one or the other of them. Exercise 1 of [TakeutiZaring] p. 15, generalized. (Contributed by NM, 13-Sep-1995.)
Assertion
Ref Expression
elprg  |-  ( A  e.  V  ->  ( A  e.  { B ,  C }  <->  ( A  =  B  \/  A  =  C ) ) )

Proof of Theorem elprg
StepHypRef Expression
1 eqeq1 2259 . . 3  |-  ( x  =  A  ->  (
x  =  B  <->  A  =  B ) )
2 eqeq1 2259 . . 3  |-  ( x  =  A  ->  (
x  =  C  <->  A  =  C ) )
31, 2orbi12d 693 . 2  |-  ( x  =  A  ->  (
( x  =  B  \/  x  =  C )  <->  ( A  =  B  \/  A  =  C ) ) )
4 dfpr2 3560 . 2  |-  { B ,  C }  =  {
x  |  ( x  =  B  \/  x  =  C ) }
53, 4elab2g 2853 1  |-  ( A  e.  V  ->  ( A  e.  { B ,  C }  <->  ( A  =  B  \/  A  =  C ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 6    <-> wb 178    \/ wo 359    = wceq 1619    e. wcel 1621   {cpr 3545
This theorem is referenced by:  elpr  3562  elpr2  3563  elpri  3564  eltpg  3580  ifpr  3585  prid1g  3636  ordunpr  4508  cnsubrg  16264  atandm  20004  eupath2lem1  23072  repfuntw  24326
This theorem was proved from axioms:  ax-1 7  ax-2 8  ax-3 9  ax-mp 10  ax-5 1533  ax-6 1534  ax-7 1535  ax-gen 1536  ax-8 1623  ax-11 1624  ax-17 1628  ax-12o 1664  ax-10 1678  ax-9 1684  ax-4 1692  ax-16 1926  ax-ext 2234
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-tru 1315  df-ex 1538  df-nf 1540  df-sb 1883  df-clab 2240  df-cleq 2246  df-clel 2249  df-nfc 2374  df-v 2729  df-un 3083  df-sn 3550  df-pr 3551
  Copyright terms: Public domain W3C validator